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Network traffic of delay-sensitive services has become a dominant part in the network. Proactive caching with

the aid of predictive information has been proposed as a promising method to enhance the delay performance,

which is one of the principal concerns of such services. In this paper, we analytically investigate the problem of

how to efficiently utilize uncertain predictive information to design proactive caching strategies with provably

good access-delay characteristics. First, we derive an upper bound for the average amount of proactive service

per request that the system can support. Then we analyze the behavior of a family of threshold-based proactive

strategies with a Markov chain, which shows that the average amount of proactive service per request can

be maximized by properly selecting the threshold. Finally, we propose the UNIFORM strategy, which is

the threshold-based strategy with the optimal threshold, and show that it outperforms the commonly used

Earliest-Deadline-First (EDF) type proactive strategies in terms of delay. We perform extensive numerical

experiments to demonstrate the influence of thresholds on delay performance under the threshold-based

strategies, and specifically compare the EDF strategy and the UNIFORM strategy to verify our results.
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1 INTRODUCTION
The traffic load in the network has been growing dramatically in recent years. Among all types

of traffic in the network, delay-sensitive traffic, such as video, gaming, virtual reality (VR) and

augmented reality (AR), has been a dominant component. According to a report from Cisco [7],

video traffic takes up 73% of all the IP traffic in 2016 and is forecasted to be 82 % by 2021; Internet

gaming traffic will grow nearly tenfold from 2016 to 2021; and the VR and AR traffic will increase

20-fold from 2016 to 2021. The delay performance of delay-sensitive services has a great impact

on the revenue of companies like Amazon and Google[12]. Therefore, it is crucial to improve the

delay performance of delay-sensitive services in communication networks.
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Distributed caching techniques are seen as an effective method to achieve this goal, and there has

been extensive work in this area, such as [21],[10],[13]. Caching networks can reduce a considerable

amount of traffic by caching data objects locally, and thereby greatly reduce the time and network

resources to fetch the requested data object from the server.

Proactive caching techniques, which take advantage of predictive information of user requests

and network states, utilize the spare bandwidth resources and potentially place the data objects

in the caches before requests are generated. In [4], two experimental cases were carried out to

show the promise of proactive caching in 5G wireless networks. There has also been considerable

literature on prediction methods based on user behaviors (e.g., [16],[1]), which showed certain

predictability of user demands. However, these work did not reveal the fundamental insights on

how much improvement in system performance we can expect by utilizing prediction information.

There has been some recent analytical work on studying the fundamental benefits achieved from

predictive information and proactive scheduling in networks. In [19], the authors characterized

the diversity and multicasting gains of proactive caching using large-deviations theory under

the assumption of perfect predictions. In [15] and [18], the authors studied a cost optimization

problem in a multi-user single-server system with proactive scheduling. The authors proposed a

model with uncertainties in user demands and channel states, and designed a proactive scheduling

algorithm, which was proved to be asymptotically optimal in cost. In [2], the authors considered

a profit maximization problem for a carrier and a cost minimization problem for users with

predictive information of user demands. In [9], the authors studied the delay performance of a

backpressure algorithm in a downlink system with perfect predictions, where the requested objects

and corresponding request epochs are accurately predicted. The authors proved that the average

queueing delay asymptotically goes to 0 as the prediction window size goes to infinity. They also

analyzed the impact of prediction window size on the delay performance. Following this work,

the authors of [22] studied the fundamental queueing performance of a single queue proactive

system. They analyzed a variety of scenarios with different arrival and service processes, different

prediction window sizes, and different types of imperfect predictions. They showed that proactive

services exponentially reduce delay, especially in a lightly-loaded case. A related work [6] designed

and analyzed a predictive scheduling algorithm which maximizes the timely-throughput, which is

the total traffic received before the deadlines. All the work mentioned above shows that taking

advantage of predictive information greatly improves the system performance.

Our work aims to study the characteristics of proactive caching based on uncertain predictive

information from a fundamental queueing theory perspective. Different from the work of [22],

we not only look at the basic queueing dynamics of the proactive system but also further explore

how to strategically utilize uncertain predictions to enhance delay performance. In terms of delay

performance, we take the Earliest-Deadline-First (EDF) type strategy, which has been widely used

in network scheduling problems, as a competitive baseline in our analysis. There have been many

work (e.g., [3],[17] and [11]) which studied the delay performance of the EDF strategy. In the

proactive caching context, we consider the ’deadlines’ to be the predicted arrival epochs. The

authors of [9] has proved that the EDF strategy achieves optimal delay performance under perfect

predictions.

The main contributions and the structure of this paper are listed as follows:

• We propose a request model which characterizes the request uncertainty by introducing a

potential request process. We aim to maximize the average amount of proactive service for

each request. We introduce our system model and problem formulation in Section 2.

• Based on the request-model with uncertainty, we reveal the iterative nature of bandwidth

resource assignment between reactive service and proactive service, by comparing the EDF
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strategy with a First-Come-First-Serve reactive strategy as an example. As a result, we derive

an upper bound on how much proactive service per request that the system can support. We

discuss the comparisons and derive the bounds in Section 3.

• For the purpose of analysis, we define a family of threshold-based proactive strategies, where

the threshold determines the maximal amount of proactive service to be done for each future

potential request. We construct a Markov chain to analyze the asymptotic behaviors of

the proactive system under the threshold-based strategies. We prove that the UNIFORM

strategy, which is the threshold-based strategy with the optimal threshold, is the solution to

the optimization problem we proposed. We obtain an important insight on how to design

an optimal proactive strategy: the strategy should balance proactive service among the

predictions in nearer future and farther future based on prediction uncertainties. We present

the threshold-based strategies, the corresponding Markov chain, and the corresponding

analysis in Section 4.

• We analytically compare the delay performance of the EDF type strategy with the UNIFORM

strategy. Although one would intuitively expect the EDF strategy to achieve desirable delay

performance based on its performance in previous network scenarios, we prove that the

delay performance of the EDF strategy is always worse than the UNIFORM strategy in all

the non-trivial cases. We show the analysis in Section 5.

• We conduct extensive range of experiments to show the delay performance of the threshold-

based strategies with different thresholds. Specifically, we compare the delay performance

of the UNIFORM strategy with the EDF strategy in multiple network scenarios, with the

reactive scheme as a baseline. The results show that proactive caching not only greatly

improves delay performance in lightly-loaded cases as concluded in [22], but also works

exceedingly well in the heavily-loaded scenario with the UNIFORM strategy. We also carry

out experiments to show the impact of prediction window size on the delay performance for

practicality concerns. The UNIFORM strategy still shows excellent delay performance with

simple modifications. We show the numerical results in Section 6.

2 SYSTEMMODEL
2.1 Network Model
We consider a system with one server providing delay-sensitive services to the user, as shown in

Figure 1. The system operates in continuous time from time 0. The user receives service from the

server at a constant rate of µ bits/sec .
Request Processes: Requests arrive at the server according to the processes shown in Figure 2.

The requests request same-sized data objects of s bits. The Potential Request Process is a Poisson
Process {P (t) ; t > 0} with an overall arrival rate of λ, where the ith arrival, i.e. Potential Request
i , requests object ri ∈ Z+1 at time ti ∈ R+, where 0 < t1 < t2 < . . .. The Actual Request Process
{A (t) ; t > 0} is a thinned version of P (t) where each arrival on P (t) is an arrival on A (t) with
probability p, independent of all other arrivals. Let {Ri ; i = 1, 2, . . .} be IID Bernoulli (p) indicator
random variables where Ri = 1 if the ith arrival on P (t) is an arrival on A (t). Thus, A (t) is a
Poisson process with an average arrival rate λp. For convenience, we denote an actual request with

its index in P (t) instead of A (t).
An important assumption we make is that every potential request requests a different object, i.e.

ri , r j ,∀i , j , i.e., the catalog size is assumed to be infinite. This assumption is motivated by many

practical problems, e.g. 1) prefetching problems, where each prefetched object is usually considered

to be specific for one user request, 2) applications where data objects are highly dynamic, like live

1Z+ = {1, 2, 3, . . . } in this paper.
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Fig. 1. Network Model

Fig. 2. Arrival Processes

streaming, online gaming, sensing data, cloud computing, etc., and 3) the small likelihood that a

user would request for the objects that are recently requested. For more general applications, our

aim is to (for simplicity) exclude the impact of popularity distributions and focus on the potential

gains of proactive caching in the presence of uncertain predictive information.

Predictions: At time 0, the server knows the sequence of objects (r1, r2, r3, . . . .) to be requested

by the arrivals in {P (t)}, and the probability p. It has no prior knowledge of the precise arrival

epochs {ti }, or the realizations of the indicator random variables {Ri }. The server observes A (t)
but not P (t). At time t > 0, the sequence of indices for future potential requests from the server’s

viewpoint, or the prediction window2
, is:

Π (t) = (I (t) + 1, I (t) + 2, I (t) + 3, . . .) (1)

where I (t) is defined as:

I (t) ≜ max {i |ti < t ,Ri = 1} (2)

i.e. the index of the most recent actual request before time t . The server proactively works on

request i only if i ∈ Π (t) at time t .
The idea of this prediction model originates from perfect prediction models used in the work

of [18], [9]. With our prediction model, we are able to tractably model uncertainties in whether

potential requests are realized, as well as uncertainties in the request arrival epochs.

2.2 Service Model
In this section, we first describe the reactive scheme, where the server works only on requests made

by actual request arrivals. We then introduce the proactive schemes where the server works on
future potential requests when not serving requests made by actual requests.

Reactive Scheme: The server node serves only arrivals in the actual request process A (t) based
on strategy ΨR as described below. Upon observing an actual request i at time ti , the object ri is
placed into the tail of a FIFO Queue with V (ti ) of unfinished work, which is transmitted back to

the user at rate µ, whereV (t) is defined as the total number of bits waiting to be transmitted in the

queue at time t in the reactive scheme. If V (t) = 0, the system is idle at t .
Proactive Schemes: The server can proactively send a data object, partially or in entirety, to the

user, which can store the data object in a local cache. Since our focus is on the effects of uncertain

predictions, we assume for simplicity that the cache size is infinite.

2
We assume the prediction window size to be infinite for simplicity of analysis. This assumption guarantees that the server

always has predicted requests on which to do proactive work.
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Let Ui (t) ≤ s be the proactive work done for request i by time t , i.e. the number of bits of object

ri sent to the user and stored in the cache by time t . Notice that for a request i , there is no reason

to continue to proactively serve it after tH (i), where H (i) ≜ min

{
j ≥ i |R j = 1

}
represents the first

potential request after i which is realized. Let

Ui ≜ min

{
s,Ui

(
tH (i)

)}
be the total proactive work done for request i . For an actual request i (Ri = 1),Ui = min {s,Ui (ti )}.
Define Si = s − Ui = max

{
0, s −Ui

(
tH (i)

)}
as the reactive part of object ri which remains

to be transmitted after the server stops proactively serving request i . For an actual request

i , Si = s − Ui = max{0, s − Ui (ti )} bits need to be transmitted reactively at ti . Let U (t) ≜(
UI (t )+1 (t) ,UI (t )+2 (t) ,UI (t )+3 (t) , . . .

)
be the set of Ui (t)’s where i ∈ Π (t). At time t , based on

U (t), the prediction window Π (t) and the queue size V (t), a stationary proactive rate allocation

strategy ΨP at the server is defined as:

Ψ (V (t) ,Π (t) ,U (t)) =
{
ρV (t) , ρI (t )+1 (t) , ρI (t )+2 (t) , ρI (t )+3 (t) , . . .

}
where ρV (t) is the rate allocated to serve the queue of V (t), and ρI (t )+i (t) , i ≥ 1, is the rate

allocated to fetch object rI (t )+i at time t . We assume that the data in V (t) has higher priority than

proactive traffic. That is, if V (t) > 0, then

∑
i ∈Z+ ρI (t )+i (t) = 0. Thus, we consider the set ΓP of

proactive strategies ΨP satisfying:

• (Reactive State) If V (t) > 0:

ρV (t) = µ,
∞∑
i=1

ρI (t )+i = 0 (3)

• (Proactive State) If V (t) = 0:

ρV (t) = 0,

∞∑
i=1

ρI (t )+i = µ (4)

• The limiting average amount of proactive work received per potential request

U ≜ lim

t→∞

∑I (t )
i=1 Ui

I (t) (5)

exists for ΨP ;
• The limiting average amount of proactive work received per actual request

UA ≜ lim

t→∞

∑
i ∈Z+:i≤I (t ),Ri=1Ui

A (t) (6)

exists for ΨP .

An example of a strategy in ΓP is the Earliest-Deadline-First (EDF) strategy. In the EDF strategy, if

V (t) = 0 at time t , then ρ J (t ) = µ, where J (t) = min{i ∈ Π(t)|Ui (t) < s}. We use EDF strategy as

an important baseline policy throughout the paper for the purpose of analysis and comparisons.

Given a sample path of arrival epochs and {Ri } realizations, the evolutions of unfinished work in

V (t) under the EDF strategy and under the reactive scheme ΨR are compared, as shown in Figure 3.
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Fig. 3. The system runs from time 0 to t . Potential requests 1 to 8 arrive at t1 to t8 respectively during this
period of time, with all potential requests realized except for request 6. The evolution of unfinished workV (t)
under the reactive scheme is plotted in blue and the evolution in the proactive scheme with the EDF strategy
is plotted in red, with the corresponding states marked on the time axis. We also show the rate allocation in
the proactive scheme.

2.3 Problem Formulation
As shown in Figure 3, there is less traffic served reactively in the proactive EDF scheme as compared

with the reactive scheme. Reducing reactive traffic is doubly desirable since (1) the delay is reduced,

and (2) there is more time for the server to do proactive work. Motivated by this, we study an

optimization problem where the objective is to maximize the average amount of proactive work

done for each request. Given λ, µ, p and s , our optimization problem then can be formulated as:

maximize

ΨP
U (ΨP ) (7)

subject to ΨP ∈ ΓP

where ΓP is defined in (3)-(6). Let Ψ∗
be an optimal solution to problem (7) and let Umax ≜ U (Ψ∗)

denote theU achieved by Ψ∗
. The solution to (7) is discussed and presented in Sections 3 and 4.

Operating Regimes: In fact, there is a limited region of λ we are interested in. In the region

0 ≤ λ <
µ
s , Umax = s,w .p.1 by Corollary 2 in [9] and Theorem 2 in [22]. With knowledge of Π (t),

the server is able to proactively serve every request before its arrival epoch with probability 1, even

if every request is realized. In the region λ ≥ µ
ps , the arrival rate of the actual request process is

beyond the stability region of the network. According to [8], full knowledge of the future does not

enlarge the stability region of the system. Thus, the queue V (t) cannot be stabilized in this region.

This implies that the server almost always works reactively, sparing no bandwidth for proactive

service. In the region
µ
s ≤ λ <

µ
ps , an optimal solution Ψ∗

to problem (7) is proposed and analyzed

in Section 4. Thus, we have the following fact:

Umax =


s,w .p.1 i f 0 ≤ λ <

µ
s

U (Ψ∗) , i f
µ
s ≤ λ <

µ
ps

0,w .p.1 i f
µ
ps ≤ λ

(8)
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Table of Notations
V (t ) Unfinished reactive work at server node

s Object size

µ Constant service rate of the system

P (t ) Potential request process

A (t ) Actual request process

λ Average arrival rate of P (t )
p Probability that each potential request is realized

ti Arrival epoch of potential request i
Ri Indicator random variable for whether request i is realized
Ui Total amount of proactive service for request i
Ui (t ) Amount of proactive service for request i by time t
Si Amount of reactive work for request i
Π (t ) Prediction window

I (t ) Index of the latest actual request before time t
J (t ) Index of the request to practively serve at t
U Limiting time average proactive service per potential request

UA Limiting time average proactive service per actual request

U ∗
Maximum limiting average proactive service per potential request

Ψ
ϕ
P Threshold-based strategy with threshold ϕ

Xn Markov chain

τn Epoch of the nth transition

Table 1. Table of Notation

Delay Performance: The corresponding delay of Ψ∗
is analyzed in Section 5. For a given

ΨP ∈ ΓP , we define the delay of an actual request i as

Di =

{
V (ti )
µ +

Si
µ , i f Si > 0 and Ri = 1

0, otherwise

where
V (ti )
µ is the waiting time of object ri in the queue at the server, and

Si
µ is the transmission

time of the reactive part of object ri . Define the limiting average delay per actual request as:

D ≜ lim

t→∞

∑
i ∈Z+:ti<t,Ri=1 Di

A (t)
Denote the average delay per actual request under Ψ∗

by DΨ∗ . We will derive the closed-form

expression of DΨ∗ , and analytically demonstrate its advantage relative to average delay of the EDF

proactive strategy.

3 RELATION BETWEEN REACTIVE SCHEME AND PROACTIVE SCHEMES
Proactive caching makes use of available link capacity when the system is idle (under the reactive

scheme). A natural question to ask is how much proactive work can be done for each request on

average. We can gain intuition from the example in Figure 3. First, the idle period in the reactive

scheme can be utilized for proactive service. Then, by proactively serving actual requests (i.e.,

1,2,3,4,5,7,8), reactive traffic is reduced so that available link capacity can be utilized more frequently

for proactive service. This is indicated in Figure 3 by the intervals marked by solid red, named

"Proactive Served". In the following, we study the characteristics of proactive service and derive an

upper bound onU .

Consider a set of sample paths corresponding to arrival epochs {ti : i = 1, 2, . . .} and realizations
{Ri = zi : i = 1, 2, . . .} (zi ∈ {0, 1}) under both the reactive scheme and a proactive scheme ΨP . We

make the following definitions. The amount of time that ΨP ∈ ΓP works in the proactive state

(namely Proactive Proactive) from 0 to t is:

TPP (t) ≜ |{τ ∈ (0, t] : V (τ ) = 0}| (9)
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The amount of time that ΨP ∈ ΓP works in reactive state (namely Proactive Reactive) from 0 to t is:

TPR (t) ≜ |{τ ∈ (0, t] : V (τ ) > 0}| (10)

The limiting fraction of time that ΨP ∈ ΓP works in the reactive state and in the proactive state,

respectively, are:

αPR ≜ lim

t→∞
TPR (t)

t
, αPP ≜ lim

t→∞
TPP (t)

t
(11)

Before we continue to study the relation between the reactive scheme and the proactive scheme,

we first define two important properties of proactive strategies.

Definition 1 (Property 1 of Proactive Strategies). A proactive strategy ΨP ∈ ΓP satisfies
Property 1 if the following condition is satisfied:

lim

t→∞

∑∞
i=I (t )+1Ui (t)

t
= 0,w .p.1 (12)

The term

∑∞
i=I (t )+1Ui (t) represents the total amount of proactive work done for potential requests

in the prediction window Π (t) up to t . Although this part of proactive work may be requested

eventually in the future, it does not contribute to the reduction of reactive work by time t . If∑∞
i=I (t )+1Ui (t) scales with t , it is likely that the corresponding U can be further improved by a

strategy which invests more proactive service into requests in the near future. We will later formally

analyze the influence of this property on our objective in Theorem 1.

Proposition 1. For all ΨP ∈ ΓP , we have

U ≥ UA, w .p.1

Proof. Please refer to Appendix A for the proof. □

We then have the following definition of the second property:

Definition 2 (Property 2 of Proactive Strategies). A proactive strategy satisfies Property 2 if
the following condition is satisfied:

UA = U ,w .p.1 (13)

Proposition 1 implies that in our setting, the average amount of proactive work per actual request

is no more than the average amount of proactive work per potential request. On the other hand, it

is more desirable that more proactive services are done for actual requests. With Property 1 and 2,

we have the following theorem of proactive strategies.

Theorem 1. Given µ, λ, s and p as system parameters, the limiting fractions of time that the server
works in the proactive state and the reactive state, respectively, under ΨP ∈ ΓP satisfy

αPP ≤ µ − λps

µ (1 − p) ,w .p.1, αPR ≥ (λs − µ)p
µ (1 − p) ,w .p.1

Equality holds in both inequalities if and only if the proactive strategy satisfies both Property 1 and
Property 2.

Proof. Please refer to Appendix B for the proof. □

Theorem 1 implies that in order tomaximize the fraction of time that the systemworks proactively,

or equivalently minimize the fraction of time that the systemworks reactively, the proactive strategy

ΨP must satisfy both Property 1 and Property 2. On the other hand, recall that we are interested in

the operating regime
µ
s ≤ λ <

µ
ps . If λ =

µ
s , we have αPR = 0,w .p.1 if and only if ΨP satisfies both
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Property 1 and Property 2. If λ =
µ
ps , we have αPR ≥ 1,w .p.1, which implies that the system almost

always works reactively with any proactive strategy ΨP ∈ ΓP . These results are consistent with
previous discussions before (8).

Define

S ≜ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) Si

A (t) (14)

as the limiting average amount of reactive work of each actual request. Then based on Theorem 1,

we have the following corollary onU and S .

Corollary 1. Given µ, λ, s and p satisfying µ
s ≤ λ <

µ
ps , the limiting average amount of proactive

work per potential request under strategy ΨP ∈ ΓP satisfies

U ≤ µ − pλs

λ (1 − p) ≜ U ∗,w .p.1 (15)

The limiting average amount of reactive work per actual request under strategy ΨP ∈ ΓP satisfies

S ≥ λs − µ

λ (1 − p) ≜ S∗,w .p.1 (16)

where equality holds in both inequalities if and only if strategy ΨP satisfies both Property 1 and
Property 2.

Proof. Please refer to Appendix C for the proof. □

Corollary 1 shows that the limiting average amount of proactive work done per potential request

is maximized if and only if a proactive strategy ΨP satisfies both Property 1 and Property 2. By

Property 2, UA is maximized under the same condition. Therefore, the optimal solution to the

objective in (7) should be proactive strategies which satisfy both Property 1 and Property 2. We

will construct such a proactive strategy, and also explain why the EDF strategy is not an optimal

solution in the next section.

4 THRESHOLD-BASED PROACTIVE STRATEGY AND MARKOV CHAIN
In order to construct an optimal proactive strategy to solve (7), we first define a family of threshold-

based strategies in ΓP . We then analyze the asymptotic behaviors of the threshold-based proactive

strategies by constructing and analyzing a corresponding Markov chain. Using this analysis, we

relate the threshold-based strategies to Property 1 and Property 2, and construct an optimal solution

to the problem (7) by choosing a specific threshold for the threshold-based strategies.

4.1 Threshold-Based Proactive Strategies

We describe the threshold-based strategies Ψ
ϕ
P in Algorithm 1. Specifically, we define ϕ ∈ (0, s] as

the threshold parameter. When working proactively, the threshold-based strategy Ψ
ϕ
P works on

request J (t) at time t , where J (t) = min{i ∈ Π(t)|Ui (t) < ϕ} is the first request in the prediction

window Π (t)which has not received ϕ bits of proactive service. By the definition of Ψ
ϕ
P , the process

{J (t) ; t > 0} is non-decreasing. In order to study the impact of ϕ on the threshold-based proactive

strategies, we construct and analyze a corresponding Markov chain under given ϕ.

4.2 Markov Chain of System under ΨϕP
We construct a Markov chain corresponding to the system under Ψ

ϕ
P , using methods applied in the

analysis of M/G/1 queues and G/M/1 queues [20],
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Algorithm 1 Threshold-based Strategies Ψ
ϕ
P

1: Main Procedure System_run(ϕ)
2: Choose the threshold as ϕ ;
3: Initialize V (t ), Π (t )
4: while t > 0 do
5: if Request i arrives at t then
6: Put reactive part Si of request i into the tail of the queue V (t ).
7: Update prediction window Π (t )
8: end if
9: % Reactive work

10: if V (t ) > 0 then
11: Transmit data from the head of the queue V (t ) with full rate µ .
12: end if
13: % Proactive work

14: if V (t ) = 0 then
15: Set J (t ) = min{i ∈ Π(t ) |Ui (t ) < ϕ }
16: % J (t ) is the earliest potential request in Π(t ) which has received less than ϕ bits of proactive service

17: if UJ (t ) (t ) < ϕ then
18: Transmit data of r J (t ) at full rate µ
19: end if
20: end if
21: end while
22: End Procedure

Definition 3 (MarkovChain of the Proactive SystemunderΨ
ϕ
P ). LetT

ϕ ≜ (τ0,τ1,τ2, . . . ,τn , . . .)
be the sequence of transition epochs, where each τn ,n = 0, 1, . . . satisfies 1)V

(
τ+n

)
= 0; 2)UJ (τ +n )

(
τ+n

)
=

0, and 3) J
(
τ+n

)
> P

(
τ+n

)
. The discrete-time process {Xn : n = 0, 1, . . .} with state space {1, 2, 3, . . .}

is defined as:

Xn = J
(
τ+n

)
− P

(
τ+n

)
,n = 0, 1, 2, . . . (17)

In Proposition 2, we will show that {Xn} is a Markov chain. We interpret the three conditions in

Definition 3 as follows. Condition 1) means that there is no reactive traffic to serve right after τn ,
so the server can proactively serve requests in Π

(
τ+n

)
. Condition 2) means that at τn , the server

starts to proactively work on request J
(
τ+n

)
, which has not received proactive service before τ+n .

The last condition means that the potential request to be proactively served at τ+n should be a

potential request which has not arrived in {P (t)} by τ+n . To summarize, the discrete-time process

{Xn : n = 0, 1, . . .} is constructed by sampling the system at {τn : n = 0, 1, . . .} when the server

starts to proactively work on a future potential request.

At each epoch τn ,n ∈ Z+, thenth transition in the Markov chain occurs.Xn = J
(
τ+n

)
−P

(
τ+n

)
,n =

0, 1, 2, . . ., represents how far the proactive service process {J (t) ; t ≥ 0} is ahead of the potential

arrival process {P (t) ; t ≥ 0} at epoch τ+n . Figure 4 shows an example of how the transition epochs

{τn : n = 0, 1, . . .} are chosen.
Example: In the example shown in Figure 4, we choose ϕ = s

2
in the threshold-based strategy.

We make the following observations on the evolution of the process.

(1) No arrival occurs in (τ0,τ1). The server finishes proactively serving request 1 at τ1, and starts

to proactively serve request 2. The process in (τ1,τ2) evolves in the same way.

(2) In (τ2,τ3), the server proactively serves request 3; requests 1 and 2 arrive, with 1 realized and

2 not realized. At τ3, the server starts to proactively serve request 4.

(3) In (τ3,τ4), request 3, 4, 5 arrive with only request 3 realized, before the server can finish

proactively serving ϕ bits of request 4. Because the server cannot observe the arrival of

request 4 or 5, it keeps proactively serving request 4 until τ ′. At τ ′, the server starts to

proactively serve request 5 ∈ Π (τ ′) = (4, 5, . . .). Nevertheless, condition 3) in Definition 3

is not satisfied at τ ′ (J (τ ′+) − P (τ ′+) = 0 < 1). Thus, τ ′ is not a transition epoch. At τ4, the
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Fig. 4. Example: Transitions in the proactive system with Ψ
ϕ
P , with ϕ = s

2

server starts to proactively serve request 6. Since conditions (1)-(3) in Definition 3 are all

satisfied, τ4 is a transition epoch.

(4) In (τ4,τ5), request 6 arrives and is realized before it receives ϕ bits proactively. Thus, it is

served reactively until all bits are received. Since there is no arrival before it finishes, we

have I (τ5) = P (τ5) = 6, so that the server starts proactively serving request 7, and τ5 is a
transition epoch.

We define An ≜ P
(
τ+n+1

)
− P

(
τ+n

)
as the number of potential arrivals in (τn ,τn+1], and Tn ≜

τn+1 − τn as the nth inter-transition time. Starting from Xn = xn ,xn ∈ Z+, the first xn − 1 requests

in Π(τ+n ), i.e., P
(
τ+n

)
+ 1, . . . , P

(
τ+n

)
+ xn − 1 (no requests if xn = 1), have already received ϕ bits of

proactive service by τn , and the request P
(
τ+n

)
+ xn just starts to be proactively served from τ+n .

If An ≥ xn , we have Xn+1 = 1. If An < xn , Xn+1 depends on An . In the following proposition, we

formally describe the evolution of {Xn ;n ≥ 0} and show its Markovian property.

Proposition 2. The discrete-time process {Xn ;n ≥ 0} defined in Definition 3 for the proactive
system under ΨϕP is Markovian, with the evolution

Xn+1 = max {Xn + 1 −An , 1} ,n = 0, 1, . . . (18)

Proof. Please refer to Appendix D for the proof. □

We now consider the transition probabilities {Pr {Xn+1 = xn+1 |Xn = xn} : xn ∈ Z+,xn+1 ∈ Z+}.
(1) If xn+1 > xn + 1, such transitions cannot happen by Definition 3.

(2) If 1 < xn+1 ≤ xn + 1, we have the following fact:

Pr {Xn+1 = xn+1 |Xn = xn} = Pr {An = xn + 1 − xn+1 |Xn = xn}

which follows Proposition 2. If we let An = k , then xn > k ≥ 0.

An interesting fact is that:

Pr {An = k |Xn = k + 1} = Pr {An = k |Xn = k + 2} = . . . (19)

This is because τn+1 is determined by 1) arrival epochs

{
ti : i > P(τ+n ), i ∈ Z+

}
, 2) realizations{

Ri : i > P(τ+n ), i ∈ Z+
}
, and 3) reactivework to be done for each request

{
Si : i > P(τ+n ), i ∈ Z+

}
.
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If An < xn , we have:

If xn > 1 :Ui (τ+n ) = ϕ, i = P(τ+n ) + 1, P(τ+n ) + 2, . . . , P(τ+n ) + xn − 1

Ui (τ+n ) = 0, i = P(τ+n ) + xn , P(τ+n ) + xn + 1, . . .
If xn = 1 :Ui (τ+n ) = 0, i = P(τ+n ) + 1, P(τ+n ) + 2, . . .

by the definition of threshold-based strategies. Then for these An = k < xn arrivals, we have:

Si = s − ϕ, i = P(τ+n ) + 1, P(τ+n ) + 2, . . . , P(τ+n ) + k, if k = 1, 2, . . .

And there is no reactive work to be done if there is no arrival before next transition, i.e.,

An = 0. So Pr {An = k |Xn = xn} only depends on conditions 1) and 2) if k < xn , which
implies (19).

Here we define:

p
ϕ
k ≜ Pr {An = k |Xn = xn} ,∀xn > k (20)

and we have

Pr {Xn+1 = xn+1 |Xn = xn} = pϕxn+1−xn+1 , if 1 < xn+1 ≤ xn + 1 (21)

(3) If xn+1 = 1, we have:

Pr {Xn+1 = xn+1 |Xn = xn} = 1 −
∞∑
i=2

Pr {Xn+1 = i |Xn = xn}

= 1 −
xn+1∑
i=2

p
ϕ
xn+1−i

= 1 −
xn−1∑
k=0

p
ϕ
k

=

∞∑
k=xn

p
ϕ
k (22)

Then the transition probabilities can be written as:

p
ϕ
xnxn+1 ≜ Pr {Xn+1 = xn+1 |Xn = xn}

=


0, xn+1 ≥ xn + 2

p
ϕ
xn+1−xn+1 , 1 < xn+1 ≤ xn + 1∑∞
k=xn p

ϕ
k , xn+1 = 1

,∀xn ∈ Z+,∀xn+1 ∈ Z+ (23)

Or equivalently, we can write the transition probabilities in matrix form:

Pϕ =


∑∞

k=1 p
ϕ
k p

ϕ
0∑∞

k=2 p
ϕ
k p

ϕ
1

p
ϕ
0∑∞

k=3 p
ϕ
k p

ϕ
2

p
ϕ
1

p
ϕ
0

. . . . . . . . . . . . . . . . . . . . . . .


(24)

where the empty entries are 0. Notice that it is structurally similar to the transition probability

matrix of the Markov chain of G/M/1 queue in [20].
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Although we have developed the structure of the transition probability matrix, the probabili-

ties

{
p
ϕ
k : k = 0, 1, 2, . . .

}
are still unknown. In the following theorem, we are going to prove an

important result of the probabilities.

Proposition 3. The probabilities
{
p
ϕ
k : k = 0, 1, 2, . . .

}
satisfy the following relationships:

∞∑
k=0

p
ϕ
k (1 − k)


> 0, i f ϕ < U ∗

= 0, i f ϕ = U ∗

< 0, i f ϕ > U ∗
(25)

whereU ∗ = µ−pλs
λ(1−p) , as defined in (15).

Proof. Please refer to Appendix E for the proof. □

Although we obtain some knowledge about transition probabilities of the Markov chain from

Proposition 3, a remaining problem of the Markov Chain is the distribution ofTn and An . IfTn = ∞
with a positive probability, the next transition may never happen. Therefore, we have the following

proposition on the expectations of Tn and An .

Proposition 4. In the Markov Chain of the proactive system with Ψ
ϕ
P as defined in Definition 3,

we have:

E [Tn |Xn = xn] < ∞, E [An |Xn = xn] < ∞, ∀xn ∈ Z+, ∀ϕ ∈ (0, s] (26)

Proof. Please refer to Appendix F for the proof. □

Proposition 4 implies that Pr {Tn < ∞} = 1, Pr {An < ∞} = 1,∀n ∈ Z+. Therefore transitions in
the corresponding Markov chain will almost surely happen in finite time.

To investigate the asymptotic behavior of the system, we need to characterize the recurrence of

the Markov chain of the system. Based on Proposition 3 and Proposition 4, we have the following

theorem on the recurrence of the Markov chain of the proactive system under Ψ
ϕ
P .

Theorem 2. The Markov chain of the proactive system with Ψ
ϕ
P is 1) transient if ϕ < U ∗, 2) positive

recurrent if ϕ > U ∗, and 3) null recurrent if ϕ = U ∗.

Proof. From Proposition 3, we can easily prove that:

∞∑
k=0

p
ϕ
k k


< 1, i f ϕ < U ∗

= 1, i f ϕ = U ∗

> 1, i f ϕ > U ∗
(27)

In Section 10.3.3 of [14], the relation between

∑∞
k=0 p

ϕ
k k and the recurrence of the corresponding

Markov chain is discussed. To be specific, the conclusion is that the Markov chain is 1) positive

recurrent if

∑∞
k=0 p

ϕ
k k > 1, 2) null recurrent if

∑∞
k=0 p

ϕ
k k = 1, and 3) transient if

∑∞
k=0 p

ϕ
k k < 1. Our

conclusion directly follows. □

Theorem 2 characterizes the relationship between ϕ and the recurrence of the Markov chain

under Ψ
ϕ
P . The recurrence of the corresponding Markov chain under different ϕ is the crucial key

to investigating the relationship between Property 1 and Property 2 with the threshold-based

strategies. In the following, we are going to discuss this relationship.

Property 1 of the Threshold-based Strategies: First, we focus on Property 1 and the threshold-
based strategies in the following lemma.
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Lemma 1. A threshold-based strategy satisfies Property 1 if and only if the corresponding Markov
chain satisfies:

lim

n→∞
Xn

n
= 0, w .p.1

Proof. Please refer to Appendix G for the proof. □

Lemma 1 transforms the conditions for Property 1 from the continuous sense in Definition 1 to a

discrete condition based on transitions in the Markov chain. The term limn→∞
Xn
n is closely related

to the recurrence of the Markov chain, which has been characterized in Theorem 2. Then we have

the following theorem on Property 1 of the threshold-based strategies.

Theorem 3. A threshold-based strategy satisfies Property 1 if and only if ϕ ≥ U ∗.

Proof. Please refer to Appendix H for the proof. □

Another way of stating Theorem 3 is that a threshold-based strategy satisfies Property 1, if and

only if the corresponding Markov chain is recurrent. Recall that the states Xn ’s represent the gaps

between the proactive service process {J (t) ; t > 0} and the potential process {P (t) ; t > 0}. If the
corresponding Markov chain is recurrent, the state Xn = 1 will always happen. This implies that

the proactive service done effectively reduces the reactive traffic of the requests which have arrived,

which is also the insights of Property 1.

Property 2 of the Threshold-based Strategies: Next, we are going to discuss Property 2 of

the threshold-based strategies. As we discussed in Proposition 1,U ≥ UA is true due to our service

model. Predictions are likely to receive more proactive service if they are unrealized. Because of

our assumptions on the orderliness of predictions in Π (t), the predictions which have arrived but

not realized are always the earliest predictions in Π (t). Intuitively, a threshold-based strategy with

a larger ϕ, which prefers to serve the earliest predictions in Π (t), is more likely to achieve U > UA.

We rigorously characterize the relationship of the threshold-based strategies and Property 2 in the

following theorem.

Theorem 4. The threshold-based strategy Ψ
ϕ
P satisfies Property 2 if and only if ϕ ≤ U ∗.

Proof. Please refer to Appendix I for the proof. □

Theorem 4 verified our previous intuitions. Similar to Theorem 3, Theorem 4 has an equivalent

statement: the threshold-based strategy Ψ
ϕ
P satisfies Property 2, if and only if the corresponding

Markov chain is NOT positive recurrent. As we discussed,U > UA is more likely to happen when

the strategy proactively works on the requests which have arrived but not realized. This only

happens when the system transits to state Xn = 1. In a transient or null recurrent case, the system

state Xn = 1 does not happen comparably often as n. As a result, Property 2 is satisfied in these

cases.

Based on Property 1 and Property 2 of the threshold-based strategies as characterized in Theorem

3 and 4, we have the following corollary which solves the optimization problem (7).

Corollary 2. U in (7) is maximized with a threshold-based proactive strategy Ψ
ϕ
P if and only if

ϕ = U ∗.

Proof. By combining Theorem 3, Theorem 4 and Corollary 1, the corollary directly follows. □

Based on the corollary, ΨU ∗
P is a solution to the optimization problem (7). Notice that this is the

only threshold-based strategy which maximizes U , and it is the only case where the corresponding

Markov chain is null recurrent.
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We obtained the following valuable insights about the characteristics of an optimal proactive

strategy under prediction uncertainties. First, the strategy should not overemphasize predictions

which are near in the future, as how the EDF strategy works, in order to account for the fact that

the potential requests may not be realized. Second, it should not overemphasize predictions which

are far in the future, in order to provide sufficient proactive services for the requests which may

arrive in the near future. Balancing these two effects as a function of the prediction uncertainties is

the key to designing a desirable proactive strategy.

5 DELAY COMPARISON BETWEEN UNIFORM AND EDF STRATEGIES
In this section, we focus on two special proactive strategies, which are the EDF (Earliest-Deadline-

First) type strategy and the UNIFORM strategy. The EDF strategy can be seen as the threshold-based

strategy with ϕ = s , which means the server will always first proactively work on the first request

in Π (t) which has not been completely proactively served. The EDF strategy has been widely used

in many scheduling problems in queueing systems. Intuitively, reducing traffic at the beginning of

a congested period might be the most efficient way to reduce delay. In our case where all objects

have a uniform size, the EDF strategy works the same as the shortest remaining time first (SRTF)

strategy, which achieves the optimal delay in a reactive queueing system. In a proactive system,

the authors of [9] have proved that the EDF strategy can achieve asymptotic optimality in terms

of delay when the size of the prediction window goes to infinity with full knowledge of future

requests and their arrival epochs. However, we will show that the UNIFORM strategy outperforms

the EDF strategy in terms of delay in the case with uncertain predictions.

First, we derive an important property of the UNIFORM strategy in the following corollary.

Corollary 3. Given µ, λ, s and p as system parameters which satisfy µ
s ≤ λ <

µ
ps , the system

operates under the UNIFORM strategy ΨU ∗
P . Then the limiting empirical distribution ofUi satisfies

lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Ui = U
∗) = 1,w .p.1 (28)

Proof. Please refer to Appendix J for the proof. □

The Corollary 3 shows that the requests under the UNIFORM strategy receiveU ∗
bits of proactive

service with probability 1. Consequently, the reactive work of each actual request is S∗ with

probability 1. Since almost all actual requests receive the same amount of proactive service, we call

this strategy UNIFORM. In the following, we derive the closed-form expression for the average

delay per actual request under the UNIFORM strategy.

Corollary 4. Given µ, λ, s and p as system parameters which satisfy µ
s ≤ λ <

µ
ps , the average

delay DU (N I FORM ) per actual request under the UNIFORM strategy ΨU ∗
P can be expressed as:

DU =
(λs − µ) (2µ − µp − λps)
2µλ (1 − p) (µ − λps) ,w .p.1 (29)

If we define DR(eactive) as the average delay of each actual request under the reactive scheme, the ratio

of DU

DR
can be expressed as:

DU

DR
=

(λs − µ) (2µ − µp − λps)
λs (1 − p) (2µ − sλp) ,w .p.1 (30)

Proof. Please refer to Appendix K for the proof. □
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The ratio in (30) directly compares the delay of UNIFORM strategy against the reactive scheme,

and we will plot it in Section 6. Next, we compare the average delay of the UNIFORM strategy

against EDF strategy.

Corollary 5. Given µ, λ, s and p as system parameters which satisfy µ
s ≤ λ <

µ
ps , the average

delay of UNIFORM strategyDU (N I FORM ) is no greater than the EDF strategyDE(DF ) with probability 1:

DU ≤ DE ,w .p.1 (31)

The equality holds if and only if p = 0.

Notice that 0 ≤ p <
µ
λs < 1, so p = 0 is the only value where the equality holds.

Proof. Please refer to Appendix L for the proof. □

The proof of Corollary 5 reveals the insights on why the UNIFORM strategy outperforms the

EDF strategy. First, the EDF strategy satisfies Property 1 but not Property 2. As a result, the average

reactive work per actual request S is larger under the EDF strategy by Corollary 2, which means

the server needs to deal with more reactive work on average. Second, the unbalanced allocation

of proactive rates in the EDF strategy impacts the delay performance. As shown in Figure 3, the

EDF strategy works well when requests are realized, like the first 5 requests. However, when the

first future potential request seen by the server is not realized, the EDF strategy usually achieves

awful delay performance. Also take Figure 3 as an example. Request 6 receives a lot of proactive

services but it is not realized, which causes request 7 to be served almost completely reactively.

Consequently, request 8 suffers from large queueing delay.

6 NUMERICAL EVALUATION
We perform extensive experiments to study the delay performance of threshold-based strategies.

Specifically, we compare the UNIFORM strategy with the EDF strategy, with the reactive scheme

as a baseline. In our simulations, we consider the network in Figure 1. We set µ = 10 and s = 1 in

all of our experiments.

In our simulations, we gradually increase the threshold ϕ from 0 to s and compare the average

delay per actual request in each case. Specifically, when ϕ = s , the strategy becomes the EDF

strategy; when ϕ = U ∗
, the strategy becomes the UNIFORM strategy; and when ϕ = 0, the system

operates in the reactive scheme. The term λp determines how heavily the network is loaded, and

we choose λp = 6 as the lightly-loaded network scenario and λp = 9.6 as the heavily-loaded

network scenario. With each fixed value of λp, we gradually increase λ from 10 to 20 and choose p
correspondingly, to evaluate the effects of prediction uncertainties on the delay performance. We

set the simulation time to be 10
7
seconds.

6.1 Infinite Prediction Window Scenarios
We first demonstrate the delay performance of threshold-based strategies under an infinite predic-

tion window.

Figures 5 and 6 show the delay performance of threshold-based strategies, with different thresh-

olds and different prediction uncertainties. The x-axis represents the threshold ϕ, which gradually

increases from 0 to s . Each curve corresponds to a (λ,p) combination with the same product λp.
Each vertical dotted line represents the thresholdsU ∗

of the UNIFORM strategy under each (λ,p)
combination, which shares same color with the corresponding curve. For each curve, the delay of

the EDF strategy is shown at x = s = 1, and the delay of the reactive scheme is shown at x = 0.

Here are some interesting observations on the plots:
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Fig. 5. Comparisons among threshold-based
methods: λp = 6

Fig. 6. Comparisons among threshold-based
methods: λp = 9.6

Fig. 7. Comparisons among EDF,UNIFORM and
Reactive Schemes: λp = 6

Fig. 8. Comparisons among EDF,UNIFORM and
Reactive Schemes: λp = 9.6

• The vertical lines perfectly mark the minimum point on each curve.
3
This implies that the

UNIFORM strategy always achieves the best delay performance among all the threshold-based

strategies.

• If we compare two curves corresponding to different (λ,p) combinations (but with the same

product λp), we can see that the delay performance of the curve with larger p and smaller λ
outperforms the one with smaller p and larger λ, until they overlap. This is because larger p
and smaller λ imply higher predictability, so that the proactive strategy has the potential to

achieve a more desirable delay performance. The overlapping part is due to the choice of

an overly-small threshold ϕ. In this case, almost every request receives ϕ bits of proactive

service, even in the case with higher predictability. This points to the significance of Property

1.

• If we compare Figure 5 and Figure 6, we observe that the curves between ϕ = s = 1 and

ϕ = U ∗
are flatter in the lightly-loaded scenario (λp = 6). This implies that delay performance

is less sensitive to threshold ϕ when the network is less congested. In the heavily-loaded

case, the choice of threshold ϕ is more crucial for achieving desirable delay performance.

In order to make more straightforward comparisons among the EDF strategy, the UNIFORM

strategy and the reactive scheme, we plot the average delay achieved by these strategies in Figures

3
Note that the vertical lines indicate ϕ = 1 on the curves for λ = 10 in both figures, meaning that ϕ = 1 is the optimal

threshold, i.e. the UNIFORM strategy is the same as the EDF strategy in this case.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.



2:18 Ran Liu, Edmund Yeh, and Atilla Eryilmaz

Fig. 9. Queue Size Evolution Comparisons among
Reactive Scheme, EDF strategy andUNIFORM strat-
egy: λp = 6

Fig. 10. Queue Size Evolution Comparisons among
Reactive Scheme, EDF strategy andUNIFORM strat-
egy: λp = 9.6

Fig. 11. Theoretical Delay Comparison be-
tween UNIFORM Strategy and Reactive
Scheme

7 and 8. We observe that with the delay performance of the reactive scheme as the baseline, the

delay performance of the EDF strategy becomes much worse in the heavily-loaded scenario as

compared with that in the light-loaded scenario, whereas the delay performance of the UNIFORM

strategy is relatively stable in both scenarios.

In Figures 9 and 10, we compare queue size evolutions under the EDF strategy, the UNIFORM

strategy and reactive scheme. In Figure 9, we observe that the queue size under the EDF strategy is

very similar to that under the reactive scheme, implying that in this case, many requests do not

receive proactive service under the EDF strategy. On the other hand, the UNIFORM strategy is able

to keep the queue size at a low level. This is because the EDF strategy assigns proactive service in a

very unbalancedmanner, while the UNIFORM strategy assigns proactive resources almost uniformly

among all requests. In Figure 10, the differences are magnified. When the network is heavily loaded,

the EDF strategy fails to effectively control congestion, but the UNIFORM strategy is able to steadily

keep the queue size at a very low level. This difference directly leads to the gap between the delay

performance of the EDF strategy and the UNIFORM strategy in the heavily-loaded scenario.

In Figure 11, we plot the ratio of the average delay under the UNIFORM strategy to that of the

reactive scheme, as calculated in Corollary 4. In this plot, λ is chosen to be from 10 to 50, and p is

chosen from 0 to 10/λ (so that λps < µ). For a fixed λ, the system is more congested with a larger

p. As can be observed, the UNIFORM strategy achieves a consistent advantage over the reactive

scheme with a fixed λ. Even in a very congested case with bad predictions (λ = 50 and p approaches

0.2), the UNIFORM strategy still can achieve approximately a 20% advantage over the reactive

scheme.

6.2 Finite Prediction Window Scenarios
In practice, prediction algorithms can only predict user requests in a finite future. In this section, we

experimentally study the impact of prediction window size on delay performance. A finite prediction
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Fig. 12. Comparisons among EDF,UNIFORM and
Modified-UNIFORM: λp = 6

Fig. 13. Comparisons among EDF,UNIFORM and
Modified-UNIFORM: λp = 9.6

window Π (t) = (I (t) + 1, I (t) + 2, . . . , I (t) +W ) is considered, where only W predictions are

available for any t > 0. In this case, there is a possibility that all the potential requests in Π (t) have
been proactively served with ϕ bits. When this happens, the system must remain idle until there

are new predictions available.

We carried out a series of experiments to assess the impact of the prediction window sizeW on

the delay performance of EDF and UNIFORM strategies. We also consider a Modified-UNIFORM

(M-UNIFORM) strategy, as described in Algorithm 2. After every available prediction in Π (t)
receives ϕ bits of proactive service, the M-UNIFORM strategy starts to proactively serve the earliest

request which has not received s bits of proactive service in the prediction window.

Figures 12 and 13 show the delay performance of these strategies. The delay performance of the

EDF strategy converges faster with respect toW . Thus the EDF strategy does not require a large

prediction window to achieve its best delay performance. On the other hand, the UNIFORM strategy

converges much more slowly, especially in the heavily-loaded case. It also requires a moderately

large prediction window size for the UNIFORM strategy to outperform the EDF strategy, especially

in the heavily-loaded case. However, we can greatly improve the delay performance of the UNIFORM

strategy with a few simple modifications. We can observe that the performance of the M-UNIFORM

strategy in the small-window region is greatly improved over that of the UNIFORM strategy.

For instance, in Figure 13, the UNIFORM strategy requires a window sizeW greater than 34 to

outperform the EDF strategy for the case of λ = 12,p = 0.8. However, the M-UNIFORM strategy

outperforms the EDF strategy even whenW = 1.

7 CONCLUSIONS
In this paper, we looked into the fundamental queueing dynamics of proactive caching strategies

under uncertain predictions and developed insights on how to design a proactive strategy to

achieve desirable delay performance in a single queue system. We solved an optimization problem

of maximizing the limiting average amount of proactive service per request. By comparing queueing

dynamics in the proactive scheme and reactive scheme under the same sample path, we derived a

tight upper bound on the objective with uncertain predictive information of future requests. We

proposed a family of threshold-based strategies, and constructed the Markov chain of the system

to analyze the asymptotic behavior of the proactive system. Consequently, we found the optimal

strategy, i.e. the UNIFORM strategy, by properly choosing the threshold in the threshold-based

strategies, which corresponds to a null recurrent Markov chain. We obtained important insights
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Algorithm 2Modified UNIFORM Strategy

1: Main Procedure System_Run(U ∗
)

2: Choose the threshold asU ∗
;

3: Initialize V (t ) , I (t ) , Π (t )
4: while t > 0 do
5: if Request i arrives at t then
6: Put reactive part Si of request i into the tail of the queue V (t ).
7: Update prediction window Π (t )
8: end if
9: if V (t ) > 0 then
10: % Reactive work

11: Transmit data from the head of the queue V (t ) with full rate µ .
12: end if
13: if V (t ) = 0 then
14: % Proactive work

15: Set i = min{i |I (t ) < i ≤ I (t ) +W , Ui (t ) < U ∗ }
16: % i is the earliest potential request in Π (t ) which has received less thanU ∗

bits of proactive service

17: if i == null then
18: %All potential requests in Π (t ) have receivedU ∗

bits of proactive work

19: Set j = min{i |I (t ) < i ≤ I (t ) +W , Uj (t ) < s }
20: if Uj (t ) < s then
21: Transmit data of r j with full rate µ
22: end if
23: if j == null then
24: %Every request in Π (t ) has received s units of proactive work
25: Stay idle

26: end if
27: else
28: if Ui (t ) < U ∗ then
29: Transmit data of ri with full rate µ
30: end if
31: end if
32: end if
33: end while
34: End Procedure

about the characteristics of an optimal proactive strategy: the strategy should balance the amount of

proactive work between the potential requests which are arriving sooner and the ones arriving later,

based on the uncertainties in predictions. We derived the closed-form expression of average delay

per actual request under the UNIFORM strategy, and analytically compared it with the commonly

used EDF type strategy. We showed that the UNIFORM strategy outperforms the EDF strategy in

all the non-trivial scenarios, which is verified by extensive numerical experiments under differently

congested network scenarios. Experimental results also showed that delay can be dramatically

decreased by proactive caching techniques not only in the lightly-loaded region as claimed in [22],

but also in the heavily-loaded case if properly designed. Our work provides valuable insights on

how to optimally design a proactive strategy to improve the delay performance in the system.
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A PROOF OF PROPOSITION 1

First we consider the terms

∑I (t )
i=1 Ui (ti )
I (t ) and

∑
i∈Z+ :Ri =1,i≤I (t )Ui (ti )

A(t ) .

∑I (t )
i=1 Ui (ti )
I (t ) is the average of terms in

{Ui (ti ) : i ≤ I (t)}.
∑
i∈Z+ :Ri =1,i≤I (t )Ui (ti )

A(t ) is the average of the samples in {Ui (ti ) : i ≤ I (t) ,Ri = 1},
which are selected from {Ui (ti ) : i ≤ I (t)} if Ri = 1. One important fact is thatUi (ti ) is independent
of Ri , because the server has no knowledge of Ri before ti . Because Ri ’s are IID, we have:

lim

t→∞

∑I (t )
i=1 Ui (ti )
I (t) = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui (ti )

A (t) ,w .p.1 (32)
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Recall thatUi = Ui (ti ) if Ri = 1, andUi ≥ Ui (ti ) if Ri = 0. So we have:

lim

t→∞

∑I (t )
i=1 Ui

I (t) ≥ lim

t→∞

∑I (t )
i=1 Ui (ti )
I (t) (33)

lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui

A (t) = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui (ti )

A (t) (34)

By combining the equations above, we have:

lim

t→∞

∑I (t )
i=1 Ui

I (t) ≥ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui

A (t) ,w .p.1 (35)

Therefore by definitions ofU andUA, we haveU ≥ UA,w .p.1.

B PROOF OF THEOREM 1
First we make the following definitions similar to (9), (10) and (11):

The amount of time that ΨR works in idle state (namely Reactive Idle) from 0 to t is:

TRI (t) ≜ | {τ ∈ (0, t] : V (τ ) = 0} | (36)

The amount of time that ΨR works in busy state (namely Reactive Busy) from 0 to t is:

TRB (t) ≜ | {τ ∈ (0, t] : V (τ ) > 0} | (37)

The limiting fraction of time that ΨR works in idle state is:

αRI ≜ lim

t→∞
TRI (t)

t
(38)

The limiting fraction of time that ΨR works in busy state is:

αRB ≜ lim

t→∞
TRB (t)

t
(39)

Compare reactive scheme with proactive scheme under the same sample path. Define the system

state at time t as "Proactive Served", if ΨR works in busy state at time t , and ΨP works in proactive

state at time t . The amount of time that ΨP works in "Proactive Served" state is:

TPS (t) ≜ | {τ ∈ (0, t] : VP (τ ) = 0,VR (τ ) > 0} | (40)

where VP (t) is the unfinished work in proactive scheme at t and VR (t) is the unfinished work in

reactive scheme at t . The corresponding time intervals are marked in Figure 3.

Observe the system at time t when V (t) = 0 in both reactive scheme and proactive scheme. All

the potential requests in {i : ti < t}, the corresponding realizations {Ri : ti < t} and the resulting

{Ui (t) : ti < t} of strategyΨP have been determined, so the entire timeline from 0 to t can be divided
in two states in both reactive scheme and proactive scheme, as shown in Figure 3. Consequently,

we have:

TRB (t) +TRI (t) = TPR (t) +TPP (t) = t (41)

An important fact to be noticed here is that:

TPP (t) = TPS (t) +TRI (t) (42)

Then by (40):

µTPS (t) =
∑

i ∈Z+:Ri=1,i≤I (t )
Ui (t) (43)
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where the term

∑
i ∈Z+:Ri=1,i≤I (t )Ui (t) is the total amount of proactive work received by all the

actual requests arrived in (0, t).
Next, the total proactive work done by time t equals µTPP (t) by the definition of TPP (t), which

satisfies the follow equation:

µTPP (t) =
I (t )∑
i=1

Ui (t) +
∞∑

i=I (t )+1
Ui (t) (44)

where the term

∑I (t )
i=1 Ui (t) is the total proactive work done for requests in {i ∈ Z+ : i ≤ I (t)}, and∑∞

i=I (t )+1Ui (t) is the total proactive work done for requests in {i ∈ Z+ : i > I (t)}.
Next we have:

limt→∞

∑
i∈Z+ :Ri =1,i≤I (t )Ui (t )

t

limt→∞
∑I (t )
i=1 Ui (t )

t

=
limt→∞

A(t )
t

∑
i∈Z+ :Ri =1,i≤I (t )Ui (t )

A(t )

limt→∞
I (t )
t

∑I (t )
i=1 Ui (t )
I (t )

=
limt→∞

A(t )
t UA

limt→∞
I (t )
t U

≤ λp

λ
,w .p.1 (45)

= p,w .p.1 (46)

with equality in (45) if and only if the strategy ΨP satisfies Property 2 based on Proposition 1.

Following (46), we have:

lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui (t)

t
= p lim

t→∞

∑I (t )
i=1 Ui (t)

t
,w .p.1 (47)

Then based on Equation (43) , (44), (45) and (47), we have:

lim

t→∞
µTPP (t)

t
p

(44)
= lim

t→∞

(∑I (t )
i=1 Ui (t) +

∑∞
i=I (t )+1Ui (t)

)
p

t

= lim

t→∞

∑I (t )
i=1 Ui (t)

t
p + lim

t→∞

∑∞
i=I (t )+1Ui (t)

t
p (48)

(47),(45)
≥

limt→∞
∑

i ∈Z+:Ri=1,i≤I (t )Ui (t)
t

,w .p.1 (49)

(43)
= lim

t→∞
µTPS (t)

t
,w .p.1 (50)

with equality in (49) if and only if the strategy satisfies both Property 1 and Property 2. So if we

put Equation (42) over t and take t → ∞, we have:

lim

t→∞
TPP (t)

t
= lim

t→∞
TPS (t)

t
+ lim

t→∞
TRI (t)

t

≤ lim

t→∞
TPP (t)

t
p + lim

t→∞
TRI (t)

t
,w .p.1 (51)

(1 − p) lim
t→∞

TPP (t)
t

≤ lim

t→∞
TRI (t)

t
,w .p.1 (52)

where (51) is from (50).
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By replacing corresponding terms in Equation (52) with Equation (38) and (11), we have:

αPP ≤ αRI
1 − p

,w .p.1 (53)

and we know from fundamental queueing theory that:

αRI = 1 − λps

µ
(54)

Then we have the result:

αPP ≤ µ − λps

µ (1 − p) ,w .p.1 (55)

And it follows that:

αPR = 1 − αPP ≥ λps − µp

µ (1 − p) ,w .p.1 (56)

with equality in (55) and (56) if and only if the strategy satisfies both Property 1 and Property 2.

C PROOF OF COROLLARY 1
The average amount of proactive work done for each potential request in {i ∈ Z+ : i ≤ I (t)} by
time t can be calculated by dividing the total amount of proactive work done for these requests by

the total number I (t), so

U = lim

t→∞

∑I (t )
i=1 Ui

I (t)

= lim

t→∞

∑I (t )
i=1 Ui (t)
I (t)

= lim

t→∞

∑∞
i=1Ui (t)
I (t) − lim

t→∞

∑∞
i=I (t )+1Ui (t)

I (t) (57)

≤
limt→∞

∑∞
i=1Ui (t )

t

limt→∞
I (t )
t

,w .p.1 (58)

=
µαPP
λ
,w .p.1 (59)

≤ µ − λps

λ (1 − p) ,w .p.1 (60)

with equality in (58) and (60) if and only if the strategy satisfies both Property 1 and Property 2. We

get (59) from (58) by the definition of αPP and by the Strong Law of Large Numbers. The second

term in (57) is 0 w.p.1 if and only if ΨP satisfies Property 1. Similarly, we have:

S = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) Si

A (t)

=
limt→∞

∑
i∈Z+ :Ri =1,i≤I (t ) Si

t

limt→∞
A(t )
t

(61)

=
µαPR
λp
,w .p.1 (62)

≥ λs − µ

λ (1 − p) ,w .p.1 (63)
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with equality in (63) if and only if the strategy satisfies both Property 1 and Property 2. (62) is by

the Strong Law of Large Numbers.

D PROOF OF PROPOSITION 2
Evolution of the Markov Chain: Consider the system starting from state Xn = xn , xn ∈ Z+ at
τn . By Definition 3, it means that 1) V

(
τ+n

)
= 0, 2) UJ (τ +n )

(
τ+n

)
= 0, and 3) J

(
τ+n

)
= P

(
τ+n

)
+ xn .

From Condition 3), we know that the system starts proactively serving request J
(
τ+n

)
= P

(
τ+n

)
+xn

right after τn . If the request P
(
τ+n

)
+ xn receives ϕ bits of proactive service before its arrival epoch

tP (τ +n )+xn , or an equivalent condition:

UP (τ +n )+xn
(
tP (τ +n )+xn

)
= ϕ (64)

is satisfied, it can be easily verified by Definition 3 that a transition happens right after the request

P
(
τ+n

)
+ xn receives ϕ bits of proactive service. Therefore if (64) is satisfied, we have:

τn+1 < tP (τ +n )+xn (65)

By the definition of threshold-based strategies, an important fact is that:

If xn > 1 :Ui (τ+n ) = ϕ, i = P(τ+n ) + 1, P(τ+n ) + 2, . . . , P(τ+n ) + xn − 1

Ui (τ+n ) = 0, i = P(τ+n ) + xn , P(τ+n ) + xn + 1, . . .
If xn = 1 :Ui (τ+n ) = 0, i = P(τ+n ) + 1, P(τ+n ) + 2, . . . (66)

given Xn = xn . Therefore another equivalent condition to (64) is:

If xn = 1 : ϕ ≤ µ
(
tP (τ +n )+xn − τn

)
If xn > 1 :

P(τ +n )+xn−1∑
i=P (τ +n )+1

(s − ϕ)Ri −V
(
tP (τ +n )+xn

)
+ ϕ ≤ µ

(
tP (τ +n )+xn − τn

)
(67)

∑P(τ +n )+xn−1
i=P (τ +n )+1

(s − ϕ)Ri represents the total amount of reactivework of all actual arrivals in

(
τn , tP (τ +n )+xn

)
.

V
(
tP (τ +n )+xn

)
represents the amount of unfinished reactive work at the arrival epoch of request

P
(
τ+n

)
+ xn . Notice that P

(
τ+n

)
+ xn is the request being proactively worked on starting from τn .

So the term

∑P(τ +n )+xn−1
i=P (τ +n )+1

(s − ϕ)Ri − V
(
tP (τ +n )+xn

)
represents the total amount of reactive work

done in

(
τn , tP (τ +n )+xn

)
. The RHS means the total amount of work that can be done in

(
τn , tP (τ +n )+xn

)
.

If Condition (67) is satisfied, it means that ϕ bits of proactive work can be done for request

J
(
τ+n

)
= P

(
τ+n

)
+ xn before tP (τ +n )+xn , so (64) and (65) are satisfied. Next, we discuss the evolution

of the Markov chain based on (67).

Case 1: If (67) is satisfied, (65) is true. In this case, we have An < xn and the following the

transition happens:

Xn+1 = J
(
τ+n+1

)
− P

(
τ+n+1

)
=

(
J
(
τ+n

)
+ 1

)
−

(
P

(
τ+n

)
+An

)
= xn + 1 −An (68)

Case 2: If (67) is not satisfied, we know that no transition happens in

(
τn , tP (τ +n )+xn

)
. Because

there have been xn arrivals by t+P (τ +n )+xn
, we have An ≥ xn . We are going to show that Xn+1 = 1 in

this case in the following.

Suppose we have Xn+1 ≥ 2, then we have J
(
τ+n+1

)
= P

(
τ+n+1

)
+ xn+1 > P

(
τ+n+1

)
+ 1 by Definition

3. Then based on the definition of threshold-based strategies in Algorithm 1, there must an epoch

τ ′ ∈
(
tP (τ +n )+Xn ,τn+1

)
such that 1) V (τ ′+) = 0, 2) UJ (τ ′+) (τ ′+) = 0, and 3)J (τ ′+) = P

(
τ+n+1

)
+ 1.
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Because we know τ ′ < τn+1, we have J (τ ′+) = P
(
τ+n+1

)
+ 1 ≥ P (τ ′+) + 1. By Definition 3, a

transition should happen at τ ′ which is earlier than τn+1. So a contradiction is achieved. Then if

An ≥ xn :

Xn+1 = 1 (69)

By summarizing Cases 1 and 2, we have

Xn+1 = max {Xn + 1 −An , 1} ,∀n = 0, 1, . . . (70)

Proof of Markovian Property: Now we consider (67). Condition (67) is determined by Xn ,{
Ri : i > P

(
τ+n

)
, i ∈ Z+

}
,

{
ti : i > P

(
τ+n

)
, i ∈ Z+

}
and V

(
tP (τ +n )+xn

)
. If the realization (i.e., Ri ’s),

arrival epoch (i.e., ti ’s) and the amount of reactive work to be done of each actual arrival are

determined, the term V
(
tP (τ +n )+xn

)
is also deterministic.

{
Ri : i > P

(
τ+n

)
, i ∈ Z+

}
are IID Binomial

random variables which are memoryless.

{
ti : i > P

(
τ+n

)
, i ∈ Z+

}
are determined by the Poisson

process {P (t) ; t > 0}, which are also memoryless. The amount of reactive work to be done of each

actual arrival is determined by Xn and the arrival processes after τn . Therefore Xn+1 only depends

on Xn and what happens after τn , and the chain is Markovian by definition.

E PROOF OF PROPOSITION 3
Recall the definition of p

ϕ
k ≜ Pr {An = k |Xn = xn} ,xn > k,k = 0, 1, 2, . . .. In order to calculate the

transition probabilities

{
p
ϕ
k ,k = 0, 1, 2, . . .

}
, we consider the probabilitiesp

ϕ
k = Pr {An = k |Xn = ∞} ,

k = 0, 1, 2, . . ., based on Fact (19).p
ϕ
k can then be interpreted as the probability that there are k poten-

tial arrivals before the next transition happens given Xn = ∞. Then the target term

∑∞
k=0 p

ϕ
k (1 − k)

can be explained as the expected drift of the next transition, i.e., E [Xn+1 − Xn |Xn = ∞], in the

Markov chain. In the following, we are going to compute the probabilities of

{
p
ϕ
k ,k = 0, 1, 2 . . .

}
,

with respect to different values of ϕ.
Distributions of Tn and An: We first analyze the distribution of Tn |Xn = ∞ and An |Xn = ∞.

Inspired by the methods used in the analysis of the distribution of busy periods in M/G/1 queues in

Section 8-4 of [20], we use a similar method.

Define function T (ω1,ω, λ,p) as the length of a time interval starting from the arrival epoch of

the first job in an empty system, to the epoch when the system becomes empty for the first time

again. The arrivals follow a Poisson process with an overall arrival rate of λ, where each arrival is

realized with probability p, IID. The service time of the first job is ω1, and the service time of the

next arrivals is ω if realized.

Notice that queueing disciplines will not affect the length of this time interval, as long as the

system is work-conserving. Specifically, if we selectω1 =
ϕ
µ andω =

s−ϕ
µ , we haveT

(
ϕ
µ ,

s−ϕ
µ , λ,p

)
=

(Tn |Xn = ∞). If we selectω1 =
s−ϕ
µ andω =

s−ϕ
µ ,T

(
s−ϕ
µ ,

s−ϕ
µ , λ,p

)
is the length of the time interval

from the arrival epoch of an actual request to the epoch it gets completely served under Last-In-

First-Out (LIFO) discipline. It is also the length of a busy period in our proposed system given

Xn = ∞, which is the time interval from the arrival of the first actual request when V (t) = 0, to

the epoch when V (t) = 0 again.

Denote the number of potential arrivals when V (t) = 0 during T (ω1,ω, λ,p) as NP ∼ P (λω1),
where P (·) is the Poisson distribution. Notice that Np is different from the number of arrivals in

T (ω1,ω, λ,p) because some arrivals happen when the server is working reactively, i.e.V (t) > 0.

Denote the number of actual arrivals among these Np arrivals as NA ∼ B (NP ,p), where B (·, ·) is
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the Binomial distribution. When an actual request among NA arrives, a busy period starts. The

length of each busy period follows the distribution T (ω,ω, λ,p), IID.
First we derive T (ω,ω, λ,p). Following similar arguments in Section 8-4 of [20], we consider

LIFO queueing discipline for unfinished work V (t), which does not affect the length of the time

interval T (ω,ω, λ,p). Then we have:

E [T (ω,ω, λ,p) |NP ,NA] = ω + NAE [T (ω,ω, λ,p)] + (NP − NA) 0 (71)

Then by definitions of NA and NP , we have:

E [T (ω,ω, λ,p) |NP ] = ω + pNPE [T (ω,ω, λ,p)] (72)

E [T (ω,ω, λ,p)] = ω + pλωE [T (ω,ω, λ,p)] (73)

So we have:

E [T (ω,ω, λ,p)] = ω

1 − pλω
(74)

Similarly, we can derive E [T (ω1,ω, λ,p)]. We know the service time of the first job is ω1, and each

busy period follows T (ω,ω, λ,p), we have:

E [T (ω1,ω, λ,p)] = ω1 + λpω1E [T (ω,ω, λ,p)] (75)

= ω1 + λpω1

ω

1 − pλω
(76)

By replacing corresponding terms, we have

E [Tn |Xn = ∞] = E

[
T

(
ϕ

µ
,
s − ϕ

µ
, λ,p

)]
=
ϕ

µ
+ λp

ϕ

µ

s−ϕ
µ

1 − pλ
s−ϕ
µ

(77)

=
ϕ

µ − pλ (s − ϕ) (78)

=
1

µ−λps
ϕ + pλ

(79)

Similarly, we can defineA (ω1,ω, λ,p) as the number of arrivals in the next transition givenXn = ∞.

With similar arguments, we have:

E [A (ω,ω, λ,p)] = λω

1 − λωp
(80)

E [A (ω1,ω, λ,p)] = λpω1

λω

1 − λωp
+ λω1 (81)

E [An |Xn = ∞] = E

[
A

(
ϕ

µ
,
s − ϕ

µ
, λ,p

)]
=

λ
µ−λps
ϕ + pλ

(82)

An interesting fact is that if we choose ϕ according toU ∗
, as defined in (15), we have

E [An |Xn = ∞]


< 1, i f ϕ < U ∗

= 1, i f ϕ = U ∗

> 1, i f ϕ > U ∗
(83)
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Fig. 14. Comparison of System 1 and System 2 in
the Proof of Proposition 4

Fig. 15. Comparison of the Proactive System and
the Virtual System in the Proof of Proposition 4

Notice that Pr {An = k |Xn = ∞} = pϕk ,∀k = 0, 1, . . ., and

E [An |Xn = ∞] =
∞∑
k=0

p
ϕ
k k (84)

So we have

∞∑
k=0

p
ϕ
k k


< 1, i f ϕ < U ∗

= 1, i f ϕ = U ∗

> 1, i f ϕ > U ∗
(85)

And our conclusion directly follows:

∞∑
k=0

p
ϕ
k (1 − k)


> 0, i f ϕ < U ∗

= 0, i f ϕ = U ∗

< 0, i f ϕ > U ∗
(86)

F PROOF OF PROPOSITION 4
In order to prove E [Tn |Xn = xn] < ∞, ∀xn ∈ Z+, we first prove that:

E [Tn |Xn = 1] ≥ E [Tn |Xn = k] ,∀k > 1 (87)

then prove that:

E [Tn |Xn = 1] < ∞ (88)

to finish the proof.

Proof of (87):
First, we prove the following:

E [Tn |Xn = 1] ≥ E [Tn |Xn = k] ,∀k > 1 (89)

Consider two systems under Ψ
ϕ
P which start from τn with P1 (τn) = P2 (τn), but in different states

: X 1

n = 1 in the first system and X 2

n = k,k > 1 in the second system. Based on (66), no proactive

service has been done for any future requests at τn in the first system, and the first k − 1 future
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requests have received ϕ bits of proactive service by time τn in the second system. Recall that J (t)
denotes the request the server would proactively work on if the V (t) = 0 at t . Here we use J1 (t)
for the first system and J2 (t) for the second system.

Because we assume P1 (τn) = P2 (τn), X 1

n = 1 and X 2

n = k,k > 1, we have J2
(
τ+n

)
> J1

(
τ+n

)
by

Definition 3. Then if we consider the same arrival processes after τn in both systems under the

same strategy Ψ
ϕ
P , we have

J2 (t) ≥ J1 (t) ,∀t ≥ τn (90)

Then we have τ 1n+1 ≥ τ 2n+1 by Definition 3, which means a transition always happens in the second

system no later than the first system. Therefore we have:

Tn |Xn = 1 ≥ Tn |Xn = k,k ≥ 2 (91)

It is true for every sample path, so we have:

E [Tn |Xn = 1] ≥ E [Tn |Xn = k] ,∀k > 1 (92)

An example of the comparison can be found in Figure 14.

Proof of (88): Next, we prove that E [Tn |Xn = 1] < ∞. Again, we use the method of comparisons

to prove it.

We compare the proactive system with a virtual system. Both systems start from state Xn = 1

(X̃n = 1 in the virtual system) at τn . In the virtual system, the server stops proactively serving any

requests from τn . Our goal is to find the earliest epoch τ ∗ > τn which satisfies:

1)Ṽ
(
τ ∗+

)
= 0, 2)Ũ J̃ (τ +n )(τ

+
n ) = 0, 3)P̃

(
τ ∗+

)
= Ĩ

(
τ ∗+

)
> I

(
τ+n

)
(93)

Note that these conditions are very similar to the conditions in Definition 3. We consider τ ∗ as
the next transition time in the virtual system. Correspondingly, we define T̃n = τ

∗ − τn . Note that
P̃ (τ ∗+) = Ĩ (τ ∗+) > I

(
τ+n

)
is a stronger condition to Condition 3) in Definition 3. Based on the

definitions, we are going to prove (
T̃n |X̃n = 1

)
≥ (Tn |Xn = 1) (94)

in two systems under the same sample path.

Now we consider the same sample path in both the proactive system under Ψ
ϕ
P and the virtual

system starting from Xn = 1 and X̃n = 1 from τn . An example of the comparison is shown in Figure

15. Since no proactive work will be done in the virtual system before τ ∗, all the actual arrivals need
to receive s bits reactively in the virtual system, which is no fewer than the proactive system for

each request. Therefore similar to the previous arguments we did for Equation (90), we have:

J̃ (t) ≤ J (t) ,∀t > τn (95)

If we compare the conditions in (93) with the conditions in Defition 3, we can see that (93) is

a stronger condition because if P (τ ∗+) = I (τ ∗+), we must have J̃ (τ ∗+) ≥ I (τ ∗+) + 1 > P (τ ∗+).
Therefore the transition in the proactive system will happen no later than the virtual system.

Therefore the transition time

(
T̃n |X̃n = 1

)
≥ (Tn |Xn = 1) is true along every sample path.

Construction of τ ∗: Here we aim to find the epoch τ ∗ in the virtual system which satisfies

conditions in Equation (93).

Our target is to find a busy period which starts with one actual arrival, and no other potential

arrivals happen before it ends. The epoch τ ∗ can be found when such a busy period ends because:

1) the server becomes idle so Ṽ (τ ∗+) = 0, 2) Ũ J̃ (τ +n )(τ
+
n ) = 0 is always true in the virtual system
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based on its assumption, 3) the latest arrival is an actual arrival so P̃ (τ ∗+) = Ĩ (τ ∗+). Because there
should be at least one actual arrival after τn , we have Ĩ (τ ∗+) > I

(
τ+n

)
so Condition 3) is satisfied.

Recall that we assume λsp < µ, so the virtual system is stable. The expected idle period length in

the virtual system is then

E [IV ] =
1

λp
(96)

where IV is defined as the length of an idle period in the virtual system. Based on
E[BV ]

E[BV ]+E[IV ] = ρ =
λps
µ , where BV is the length of a busy period in the virtual system, we can also calculate the expected

length of a busy period in the virtual system E [BV ]. So we know that E [IV ] < ∞,E [BV ] < ∞.

The next step is to find such a busy period. Every time a busy period starts with an actual arrival,

the probability that there are no potential arrivals during the service time of the actual arrival
s
µ is

e−λ
s
µ
, IID. Therefore, the expected number of busy periods that such a busy period happens for

the first time is E [NB ] = 1

e−λ
s
µ
= eλ

s
µ
, where NB is the number of busy periods when the first busy

period satisfying the condition is observed. So the expected time that such a busy period happens

is then bounded as:

E
[
T̃n |X̃n = 1

]
≤ E [NB ] (E [IV ] + E [BV ]) < ∞ (97)

Define the bound EV ≜ E [NB ] (E [IV ] + E [BV ]), which is a deterministic finite number given

system parameters λ,p, s, µ. Therefore we have our bound on E [Tn |Xn]:

E [Tn |Xn] ≤ E [Tn |Xn = 1] ≤ E
[
T̃n |X̃n = 1

]
= EV < ∞, ∀Xn ∈ Z+ (98)

So we proved E [Tn |Xn = k] < ∞,∀k ∈ Z+ by combining (87) and (88).

Similarly we can prove E [An |Xn = k] < ∞,∀k ∈ Z+.

G PROOF OF LEMMA 1
First assume that by time t , there have been M (t) ≜ max {m |τm ≤ t} transitions in the Markov

chain under Ψ
ϕ
P . Then we have the following inequalities ofM (t):

M (t) ≤ P (t) + µt

ϕ
(99)

lim

t→∞
t

M (t) ≤ EV ,w .p.1 (100)

where EV ≜ E [NB ] (E [IV ] + E [BV ]) is the bound in (97). Equation (99) is by the fact that a transition
happens either when the server finishes proactively serving a request with ϕ bits, or some potential

arrival happens before it receives ϕ bits of proactive service. The term limt→∞
t

M (t ) is the limiting

average of Tn . Equation (100) is from Proposition 4. Take (99) over t and take limit of t → ∞, we

get:

lim

t→∞
M (t)
t

≤ lim

t→∞

(
P (t)
t
+

µ

ϕ

)
= λ +

µ

ϕ
,w .p.1 (101)

Combining it with (100), we have:

λ +
µ

ϕ
≥ lim

t→∞
M (t)
t

≥ 1

EV
(102)
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On the other hand, recall that if J (t) > P (t), we have (66). Based on Definition 3, Xn+1 − Xn ≤
1,∀n = 0, 1, . . .. Then we have:

J (t) − P (t) ≤ max

{
XM (t ),XM (t )+1

}
≤ XM (t ) + 1 (103)

J (t) − P (t) ≥ min

{
XM (t ),XM (t )+1

}
≥ XM (t )+1 − 1 (104)

∀t ∈ (
τM (t ),τM (t )+1

)
Therefore we have ∀t ∈ (τn ,τn+1) :

∞∑
i=P (t )+1

Ui (t) ≤ max {ϕ (J (t) − P (t)) , 0} (105)

≤ ϕ
(
XM (t ) + 1

)
(106)

∞∑
i=P (t )+1

Ui (t) ≥ max {ϕ (J (t) − P (t) − 1) , 0} (107)

≥ ϕ
(
XM (t )+1 − 2

)
(108)

,∀t ∈ (
τM (t ),τM (t )+1

)
(105) is achieved by considering the amount of proactive service done for request J (t) as ϕ. (106) is
from (103). (107) is achieved by considering the amount of proactive service done for request J (t)
as 0, and (108) is from (104). Therefore for all t , we have:∑∞

i=P (t )+1Ui (t)
t

≤
ϕ

(
XM (t ) + 1

)
t

(109)∑∞
i=P (t )+1Ui (t)

t
≥

ϕ
(
XM (t )+1 − 2

)
t

(110)

If we take the limit of t → ∞ we have

lim

t→∞

∑∞
i=P (t )+1Ui (t)

t
≤ lim

t→∞

ϕ
(
XM (t ) + 1

)
t

= lim

t→∞

ϕ
(
XM (t ) + 1

)
M (t)

M (t)
t

≤ lim

n→∞
Xn

n
ϕ

(
λ +

µ

ϕ

)
(111)

lim

t→∞

∑∞
i=P (t )+1Ui (t)

t
≥ lim

t→∞

ϕ
(
XM (t )+1 − 2

)
t

= lim

t→∞

ϕ
(
XM (t )+1 − 2

)
M (t)

M (t)
t

≥ lim

n→∞
Xn

n

ϕ

EV
(112)

So if we know limn→∞
Xn
n = 0,w .p.1, we have limt→∞

∑∞
i=P (t )+1Ui (t )

t = 0,w .p.1 from (111). And if

limt→∞

∑∞
i=P (t )+1Ui (t )

t = 0,w .p.1, we have limn→∞
Xn
n = 0,w .p.1 from (112). So by Definition 1, the

threshold-based strategy Ψ
ϕ
P satisfies Property 1 if and only if the corresponding Markov chain

satisfies limn→∞
Xn
n = 0,w .p.1.
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H PROOF OF THEOREM 3
Case 1: If ϕ < U ∗

, we know that the chain is transient from Theorem 2. Therefore, ∃N > 0 such

that:

Xn > 1,∀n > N

with probability 1. From the N th transition, we look at the drifts, i.e. ∆m ≜ Xm+1 − Xm ,∀m ∈ Z+.
Then for all n > N :

Xn = XN +

n−1∑
i=N

(Xi+1 − Xi )

= XN +

n−1∑
i=N

∆i

= XN +

∞∑
k=0

∑
i ∈Z+:∆i=1−k,N ≤i<n

∆i (113)

= XN +

∞∑
k=0

(1 − k) | {i ∈ Z+ : ∆i = 1 − k,N ≤ i < n} |
n − N

(n − N ) (114)

(113) is achieved by grouping transitions based on the size of drifts. Notice that
| {i ∈Z+:∆i=1−k,N ≤i<n } |

n−N
is the fraction of drifts with value 1−k , where there are k arrivals before the next transition. Because

the chain never revisits state 1 after N , the probability that there are k arrivals is p
ϕ
k . So as n → ∞,

we have:

lim

n→∞
| {i ∈ Z+ : ∆i = 1 − k,N ≤ i < n} |

n − N
= p

ϕ
k ,w .p.1 (115)

based on Strong Law of Large Numbers. If we take both sides over n and take the limit of n → ∞,

we have:

lim

n→∞
Xn

n
= lim

n→∞

(
XN

n
+

∞∑
k=0

(1 − k) | {i ∈ Z+ : ∆i = 1 − k,N ≤ i < n} |
n − N

(n − N )
n

)
=

∞∑
k=0

(1 − k) lim
n→∞

(
| {i ∈ Z+ : ∆i = 1 − k,N ≤ i < n} |

n − N

(n − N )
n

)
=

∞∑
k=0

(1 − k)pϕk

> 0 (116)

based on Proposition 3. So when ϕ < U ∗
, the threshold-based strategy does not satisfy Property 1

based on Lemma 1.

Case 2: If ϕ ≥ U ∗
, we consider a virtual strategy. In this strategy, the server can do proactive

work at the rate of

µϵ ≜

λ
µ−λps
ϕ +λp

1 − ϵ
µ ≥

λ
µ−λps
U ∗ +λp

1 − ϵ
µ =

1

1 − ϵ
µ > µ, ϵ ∈ (0, 1) (117)

In this case, define Jϵ (t) as the request that the system would proactively work on at time t under
the virtual strategy. Because the system is always working at a strictly higher rate µϵ > µ with the
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virtual strategy, we have Jϵ (t) ≥ J (t) ,∀t if the two systems are under the same sample path. Then

by Definition 3, we have:

X ϵn ≥ Xn ,∀n ∈ Z+ (118)

where X ϵn is defined as the states under the virtual strategy.

Following the same steps of Proposition 3, we can derive the new set of transition probabilities{
p
ϵϕ
k

}
, and prove that the Markov chain under the virtual strategy is transient. Specifically:

lim

n→∞

X ϵn
n
=

∞∑
k=0

p
ϵϕ
k (1 − k) = ϵ,∀ϵ ∈ (0, 1) (119)

So ∀ϵ ∈ (0, 1), we have

lim

n→∞
Xn

n
≤ lim

n→∞

X ϵn
n
= ϵ (120)

And if we take ϵ → 0:

lim

n→∞
Xn

n
≤ lim

ϵ→0

lim

n→∞

X ϵn
n
= 0 (121)

Therefore based on Lemma 1, the threshold-based strategy satisfies Property 1 when ϕ ≥ U ∗
.

Then by summarizing Cases 1 and 2, the threshold-based strategy Ψ
ϕ
P satisfies Property 1 if and

only if ϕ ≥ U ∗
.

I PROOF OF THEOREM 4
In order to prove Theorem 4, we first consider the following Lemma 2. The idea of Lemma 2 is

to look at the proactive work done within one transition. Under strategy Ψ
ϕ
P , denote the total

amount of proactive work done in (τn ,τn+1) for all potential requests as ζn , and denote the amount

of proactive work done in (τn ,τn+1) for actual requests as ζ An . We investigate the expectation of ζn
and ζ An conditioned on Xn and Xn+1 in Lemma 2.

Lemma 2.

E
[
ζ An |Xn = k,Xn+1 = l

]
= E [ζn |Xn = k,Xn+1 = l]p, i f l > 1 (122)

E
[
ζ An |Xn = k,Xn+1 = l

]
≤ E [ζn |Xn = k,Xn+1 = l]p, i f l = 1 (123)

E
[
ζ An |Xn = k,Xn+1 = l

]
< E [ζn |Xn = k,Xn+1 = l]p, i f k = 1, l = 1 (124)

Proof. Proof of (122): Given the starting state Xn = k at τn , we focus on the request P (τn) + k
which is the request that starts to receive proactive service from τn .

IfXn+1 > 1, it means that the server is able to proactively serve request P (τn)+k before it arrives,

i.e. tP (τn )+k > τn+1. So we have the following:

(ζn |Xn = k,Xn+1 = l) =ϕ (125)(
ζ An |Xn = k,Xn+1 = l

)
=

{
ϕ, i f RP (τn )+i = 1

0, i f RP (τn )+i = 0

,∀k ≥ 1,∀l > 1 (126)

Because Pr
{
RP (τn )+k = 1

}
= p independently, we have:

E
[
ζ An |Xn = k,Xn+1 = l

]
= E [ζn |Xn = k,Xn+1 = l]p = ϕp, ∀k ≥ 1,∀l > 1 (127)

So (122) is proved.
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Proof of (123): If Xn+1 = 1, which means that the request P (τn) + k arrives before it receives ϕ
bits of proactive service, i.e. tP (τn )+k < τn+1, we know that

(1) All the proactive work done in

(
τn , tP (τn )+k

)
is for request P (τn) + k ;

(2) All the proactive work done in

(
tP (τn )+k ,τn+1

)
are for requests that are not realized.

Both of these facts are by the definition of threshold-based strategy. Because the server will keep

proactively serving request P (τn)+k until it receives ϕ bits proactively or until it arrives, statement

(1) is true. For statement (2), if any request that has not arrived starts to be proactively served,

a transition should happen at the moment it starts receiving proactive service by Definition 3.

Therefore before the transition happens, i.e. τn+1, there should be no proactive service for future

potential arrivals. Take what happens in (τ3,τ4) in Figure 4 as an example. The server starts

proactively serving request 4 at τ3. In (τ3, t4), all the proactive work are done for request 4. All the

proactive work in (t4,τ4) are done for the requests which are not realized.

Based on the discussions above, we have the following analysis. Consider the system starting

at τn from state Xn = k ∈ Z+. Define a tuple of random vectors Θn,k ≜
(
ξn,k ,νn,k

)
, where

ξn,k ≜
(
tP (τn )+1, tP (τn )+2 , . . . , tP (τn )+k

)
denotes a random vector of the next k arrival epochs ti ’s

after τn , and νn,k ≜
(
RP (τn )+1 ,RP (τn )+2, . . . ,RP (τn )+k−1

)
denotes a random vector of the next k − 1

Ri ’s after τn . A realization Θn,k = θn,k determines a set of sample paths after τn , where the first
k arrival epochs and the realization of the first k − 1 arrivals are determined. Given Xn = k and

Θn,k = θn,k , what happens in the system during

(
τn , tP (τn )+k

)
is deterministic. We also know

whether τn+1 > tP (τn )+k or not, which determines if Xn+1 = 1 or Xn+1 > 1, as discussed in the proof

of Proposition 2.

Define Qn,k,1 as:

Qn,k,1 ≜
{
θn,k : Xn+1 = 1,Xn = k

}
(128)

which represents the set of sample paths under which the system transits from state k to 1 starting

from τn .
Then ∀θn,k ∈ Qn,k,1,∀k ∈ Z+,n = 0, 1, . . . we have:(
ζn |Θn,k = θn,k ,Xn = k

)
≥

(
UP (τn )+k

(
tP (τn )+k

)
|Θn,k = θn,k ,Xn = k

)
(129)(

ζ An |Θn,k = θn,k ,Xn = k
)
=

{(
UP (τn )+k

(
tP (τn )+k

)
|Θn,k = θn,k ,Xn = k

)
, i f RP (τn )+k = 1

0, i f RP (τn )+k = 0

(130)

Therefore ∀θn,k ∈ Qn,k,1,∀k ∈ Z+,n = 0, 1, . . .:

ER [ζ An |Θn,k = θn,k ,Xn = k] =
(
UP (τn )+k

(
tP (τn )+k

)
|Θn,k = θn,k ,Xn = k

)
p

≤ ER [ζn |Θn,k = θn,k ,Xn = k]p (131)

where ER [·] means expectation with respect to RP (τn )+k . And by definition of Qn,k,1, we have:

E
[
ζ An |Xn = k,Xn+1 = 1]

= E
[
ζ An |Xn = k,Θn,k ∈ Qn,k,1

]
=

∫
Qn,k,1

Pr
{
Θn,k = θn,k |Θn,k ∈ Qn,k,1

}
· ER [ζ An |Θn,k = θn,k ,Xn = k]dθn,k

≤
∫
Qn,k,1

Pr
{
Θn,k = θn,k |Θn,k ∈ Qn,k,1

}
· ER [ζn |Θn,k = θn,k ,Xn = k]pdθn,k

= E [ζn |Xn = k,Xn+1 = 1]p (132)
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where (132) is by replacing corresponding terms according to (131). So we have:

E
[
ζ An |Xn = k,Xn+1 = 1

]
≤ E [ζn |Xn = k,Xn+1 = 1]p,∀k ∈ Z+ (133)

so (123) is proved.

Proof of (124): The system starts from state Xn = 1. It means at time τn , no proactive work is

done for any of the potential requests which have not arrived yet. Similar to the method we used to

prove (123), we focus on the set Qn,1,1 in this case. Recall that θn,1 ∈ Qn,1,1 if and only if Xn+1 = 1

given Xn = 1 and Θn,1 = θn,1. Notice that θn,1 = (ξ (n, 1) ,ν (n, 1)) where ξ (n, 1) =
(
tP (τn )+1

)
and

ν (n, 1) is an empty vector, which means the arrival epoch of request P (τn) + 1 determines whether

Xn+1 = 1 or not. To be specific, Xn+1 = 1 if and only if tP (τn )+1 <
ϕ
µ + τn . So:

Qn,1,1 =
{
θn,1 : Xn+1 = 1,Xn = 1

}
=

{
θn,1 : tP (τn )+1 <

ϕ

µ
+ τn

}
(134)

We consider another set of sample paths Qn,1,1 which is defined as:

Qn,1,1 ≜

{
θn,1 : tP (τn )+1 < τn +

ϕ

2µ
, tP (τn )+2 − tP (τn )+1 ≥

ϕ

2µ

}
(135)

By comparing (135) and (134), it is true that Qn,1,1 ⊊ Qn,1,1.

We discuss the value of ζn under condition Θn,1 = θn,1 ∈ Qn,1,1. If RP (τn )+1 = 1, the system

will proactively work on request P (τn) + 1 until tP (τn )+1. Consequently, request P (τn) + 1 receives
fewer than

ϕ
2
bits of proactive service due to the definition of Qn,1,1. If RP (τn )+1 = 0, the system

will proactively work on request P (τn) + 1, until it receives ϕ bits from proactive service or until

tP (τn )+2. Therefore we have ∀θn,1 ∈ Qn,1,1,∀n = 0, 1, . . .:(
ζn |Θn,1 = θn,1,Xn = 1

)
≥

{(
UP (τn )+1

(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
, i f RP (τn )+1 = 1(

UP (τn )+1
(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
+
ϕ
2
, i f RP (τn )+1 = 0

(136)(
ζ An |Θn,1 = θn,1,Xn = 1

)
=

{(
UP (τn )+1

(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
, i f RP (τn )+1 = 1

0, i f RP (τn )+1 = 0

(137)

And ∀θn,1 ∈ Qn,1,1,∀n = 0, 1, . . .:

ER [ζn |Θn,1 = θn,1,Xn = 1] ≥
(
UP (τn )+1

(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
+
ϕ (1 − p)

2

(138)

ER [ζ An |Θn,1 = θn,1,Xn = 1] =
(
UP (τn )+1

(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
p (139)

So

ER [ζ An |Θn,1 = θn,1,Xn = 1] ≤ ER [ζn |Θn,1 = θn,1,Xn = 1]p − ϕp (1 − p)
2

,∀θn,1 ∈ Qn,1,1,∀n = 0, 1, . . . (140)
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Then we have:

E
[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
=

∫
Qn,1,1

Pr
{
Θn,1 = θn,1 |Θn,1 ∈ Qn,1,1

}
· ER [ζ An |Θn,1 = θn,1 ∈ Qn,1,1,Xn = k]dθn,1

≤
∫
Qn,1,1

Pr
{
Θn,1 = θn,1 |Θn,1 ∈ Qn,1,1

}
·
(
ER [ζn |Θn,1 = θn,1 ∈ Qn,1,1,Xn = k]p − ϕp (1 − p)

2

)
dθn,1

(141)

=

∫
Qn,1,1

Pr
{
Θn,1 = θn,1 |Θn,1 ∈ Qn,1,1

}
·
(
ER [ζn |Θn,1 = θn,1 ∈ Qn,1,1,Xn = k]p

)
dθn,1

−
∫
Qn,1,1

Pr
{
Θn,1 = θn,1 |Θn,1 ∈ Qn,1,1

}
·
(
ϕp (1 − p)

2

)
dθn,1

= E
[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p − ϕp (1 − p)

2

(142)

So for the set Qn,1,1:

E
[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
≤ E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p − ϕp (1 − p)

2

(143)

By the Law of Total Expectation, consider the set Qn,1,1 and we know that:

E
[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
= Pr

{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
+ Pr

{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
(144)

E
[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
= Pr

{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
+ Pr

{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
E

[
ζ An |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
(145)

where Qn,1,1 \Qn,1,1 is the set difference of Qn,1,1 and Qn,1,1. The conditional probability

Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
can be calculated as follow:

Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
=

Pr
{
Θn,1 ∈ Qn,1,1,Θn,1 ∈ Qn,1,1

}
Pr

{
Θn,1 ∈ Qn,1,1

} (146)

=
Pr

{
Θn,1 ∈ Qn,1,1

}
Pr

{
Θn,1 ∈ Qn,1,1

} (147)

where the probabilities Pr
{
Θn,1 ∈ Qn,1,1

}
and Pr

{
Θn,1 ∈ Qn,1,1

}
can be derived as follow:
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Pr
{
Θn,1 ∈ Qn,1,1

}
= Pr

{
tP (τn )+1 − τn <

ϕ

µ

}
(148)

= 1 − e−λ
ϕ
µ

(149)

Pr
{
Θn,1 ∈ Qn,1,1

}
= Pr

{
tP (τn )+1 − τn <

ϕ

2µ
& tP (τn )+2 − tP (τn )+1 >

ϕ

2µ

}
(150)

= Pr

{
tP (τn )+1 − τn <

ϕ

2µ

}
· Pr

{
tP (τn )+2 − tP (τn )+1 >

ϕ

2µ

}
(151)

=
(
1 − e−λ

ϕ
2µ

) (
e−λ

ϕ
2µ

)
= e−λ

ϕ
2µ − e−λ

ϕ
µ

(152)

So one can see that Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
> 0, and Pr

{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
> 0. Equation (131) can be applied to ∀θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
⊊ Qn,1,1, so we should have

∀θn,1 ∈
(
Qn,1,1 \Qn,1,1

)
:

ER [ζ An |Θn,1 = θn,1,Xn = 1] =
(
UP (τn )+1

(
tP (τn )+1

)
|Θn,1 = θn,1,Xn = 1

)
≤ ER [ζn |Θn,1 = θn,1,Xn = 1]p (153)

∀θn,1 ∈
(
Qn,1,1 \Qn,1,1

)
,∀n = 0, 1, . . .

and consequently:

E
[
ζ An |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
≤ E

[
ζn |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
p (154)
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By combining this equation with (143), we are able to compare Equation (144) and (145). We have:

E
[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
= Pr

{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
+ Pr

{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
E

[
ζ An |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
(155)

≤ Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p

+ Pr
{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

} (
E

[
ζn |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
p − ϕp (1 − p)

2

)
(156)

= Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p

+ Pr
{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
p

− Pr
{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

} ϕp (1 − p)
2

< Pr
{
Θn,1 ∈ Qn,1,1 |Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p

+ Pr
{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
E

[
ζn |Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
,Xn = 1

]
p (157)

= E
[
ζn |Θn,1 = θn,1 ∈ Qn,1,1,Xn = 1

]
p (158)

Equation(155) is from (145). Equation (156) is from (143). Equation (157) is by removing term

−Pr
{
Θn,1 ∈

(
Qn,1,1 \Qn,1,1

)
|Θn,1 ∈ Qn,1,1

}
ϕp(1−p)

2
which is strictly negative. Then (158) is from

(144). So we finally have:

E
[
ζ An |Θn,1 ∈ Qn,1,1,Xn = 1

]
< E

[
ζn |Θn,1 ∈ Qn,1,1,Xn = 1

]
p (159)

where (124) directly follows.

We have proved (122), (123) and (124) by now, so Lemma 2 is proved. □

Lemma 2 can be interpreted as follow. In (τn ,τn+1), if ζn bits of proactive service can all be

potentially realized, we should have E
[
ζ An

]
= E [ζn]p based on our assumptions on the request

processes. This is the case when a transition Xn+1 > 1 happens, when every bit of ζn is done

before the corresponding request arrives. However if a transition Xn+1 = 1 happens, the amount

of proactive work done in (τn ,τn+1) that can potentially be realized is no more than ζn , leading to
the inequality E

[
ζ An

]
≤ E [ζn]p in this scenario. An example is shown in (τ3,τ4) of Figure 4. The

amount of proactive work done in (τ ′,τ4) is for request 5 which has arrived but not realized. This

part of proactive work will never be realized, so it is not included in ζ An which causes the inequality.

Specifically if transitions Xn = 1,Xn+1 = 1 happen, we proved that strict inequality is achieved.

Intuitively if the transition to the state 1 happens comparably often as all transitions, it will be

most likely thatU > UA, based on Lemma 2. Then we proceed to prove Theorem 4.

Proof of Theorem 4: Define N (t) ≜ max

{
n |J

(
τ+n

)
≤ I (t)

}
as the index of the transition

where the latest actual request received proactive service. From Proposition 4, we know that the

expected time before next transition is finite. So as t → ∞, we know N (t) → ∞ as well. And

limt→∞
t

N (t ) = E [Tn] ,w .p.1 where E [Tn] is a finite constant given system parameters. Recall that

we define ζn as the amount of proactive work done in (τn ,τn+1), and ζ An as the amount of proactive

work done for actual requests in (τn ,τn+1).
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Consider the term

∑I (t )
i=1 Ui . If we rewrite this term from the point of view of transitions, we have:

I (t )∑
i=1

Ui =

N (t )∑
n=0

ζn − o (t) (160)

where the term o (t) represents the amount of proactive work done in

(
τN (t ),τN (t )+1

)
for requests

which arrive later than I (t). We know o (t) < ζN (t ) by definition, and we know that
E[ζn ]
µ ≤ E [Tn] <

∞,w .p.1, so we have:

lim

t→∞
o (t)
t
= 0,w .p.1 (161)

Then we have:

U = lim

t→∞

∑I (t )
i=1 Ui

I (t) (162)

= lim

t→∞

∑N (t )
n=0 ζn − o (t)

I (t) (163)

= lim

t→∞

(∑N (t )
n=0 1 (Xn+1 = 1) ζn

N (t) +

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t)

)
N (t)
I (t) (164)

= lim

t→∞

(∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζn

N (t) +

∑N (t )
n=0 1 (Xn > 1,Xn+1 = 1) ζn

N (t)

+

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t)

)
N (t)
I (t) (165)

where (164) and (165) are by grouping the terms based on transitions. The term limt→∞
∑N (t )
n=0 1(Xn+1=1)

N (t )
represents the limiting fraction of state 1, and the other terms in similar form can be interpreted

correspondingly.

Similarly we have:

UA = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Ui

A (t)

= lim

t→∞

(∑N (t )
n=0 1 (Xn+1 = 1) ζ An

N (t) +

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t)

)
N (t)
A (t) (166)

= lim

t→∞

(∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζ An

N (t) +

∑N (t )
n=0 1 (Xn > 1,Xn+1 = 1) ζ An

N (t)

+

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t)

)
N (t)
A (t) (167)

Case 1: If ϕ < U ∗
, we know the Markov chain is transient. So we have

lim

t→∞

∑N (t )
n=0 1 (Xn = 1)

N (t) = 0,w .p.1 (168)

lim

t→∞

∑N (t )
n=0 1 (Xn > 1)

N (t) = 1,w .p.1 (169)
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Therefore based on Lemma 2 and Strong Law of Large Numbers, we have:

lim

t→∞

∑N (t )
n=0 1 (Xn+1 = 1) ζn

N (t) = lim

t→∞

∑N (t )
n=0 1 (Xn+1 = 1) ζn∑N (t )
n=0 1 (Xn+1 = 1)

∑N (t )
n=0 1 (Xn+1 = 1)

N (t) (170)

= 0,w .p.1 (171)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 = 1) ζ An

N (t) = lim

t→∞

∑N (t )
n=0 1 (Xn+1 = 1) ζ An∑N (t )
n=0 1 (Xn+1 = 1)

∑N (t )
n=0 1 (Xn+1 = 1)

N (t) (172)

= 0,w .p.1 (173)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t) = lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζn∑N (t )
n=0 1 (Xn+1 > 1)

∑N (t )
n=0 1 (Xn+1 > 1)

N (t)
= E [ζn |Xn+1 > 1] · 1 (174)

= ϕ,w .p.1 (175)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t) = lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζ An∑N (t )
n=0 1 (Xn+1 > 1)

∑N (t )
n=0 1 (Xn+1 > 1)

N (t)

= E
[
ζ An |Xn+1 > 1

]
· 1 (176)

= ϕp,w .p.1 (177)

And limt→∞
A(t )
N (t ) should be the average number of actual arrivals between two consecutive tran-

sitions, which converges to λpE [Tn] by the Law of Large Numbers. So from (164) and (166) we

have:

U = lim

t→∞

(∑N (t )
n=0 1 (Xn+1 = 1) ζn

N (t) +

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t)

)
N (t)
I (t)

=
ϕ

λE [Tn]
,w .p.1 (178)

UA = lim

t→∞

(∑N (t )
n=0 1 (Xn+1 = 1) ζ An

N (t) +

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t)

)
N (t)
A (t) (179)

= ϕp
1

pλE [Tn]
=

ϕ

λE [Tn]
,w .p.1 (180)

Therefore we haveU = UA,w .p.1 when ϕ < U ∗
.

Case 2: If ϕ = U ∗
, the Markov chain is null recurrent. So we have

lim

t→∞

∑N (t )
n=0 1 (Xn+1 = 1)

N (t) = 0,w .p.1 (181)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1)

N (t) = 1,w .p.1 (182)
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Then the deductions are similar Case 1, so we directly show the conclusions:

U =
ϕ

λE [Tn]
,w .p.1 (183)

UA =
ϕ

λE [Tn]
,w .p.1 (184)

Therefore we haveU = UA,w .p.1 when ϕ = U ∗
.

Case 3: If ϕ > U ∗
, the Markov chain is positive recurrent. So the Markov chain has a limiting

distribution, or steady state probability {πk ,k = 1, 2, . . .}, where πk ≜ Pr {limn→∞Xn = k} ,∀k ∈
Z+. Then we have:

lim

t→∞

∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζn

N (t)

= lim

t→∞

(∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζn∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1)

∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1)∑N (t )

n=0 1 (Xn = 1)

∑N (t )
n=0 1 (Xn = 1)

N (t)

)
(185)

= E [ζn |Xn = 1,Xn+1 = 1] Pr {Xn+1 = 1|Xn = 1} π1,w .p.1 (186)

= π1

∞∑
k=1

p
ϕ
k E [ζn |Xn = 1,Xn+1 = 1] ,w .p.1 (187)

In (185),

∑N (t )
n=0 1(Xn=1,Xn+1=1)ζn∑N (t )
n=0 1(Xn=1,Xn+1=1)

is the average of ζn between two consecutive transitions where

Xn = 1,Xn+1 = 1, which converges to E [ζn |Xn = 1,Xn+1 = 1].
∑N (t )
n=0 1(Xn=1,Xn+1=1)∑N (t )

n=0 1(Xn=1)
is the fraction

of next transition where Xn+1 = 1 given Xn = 1, which converges to transition probability

Pr {Xn+1 = 1|Xn = 1}.
∑N (t )
n=0 1(Xn=1)

N (t ) is the fraction of state 1, which converges to π1 in positive

recurrent case. Therefore we have (186) based on the Strong Law of Large Numbers. Following

similar arguments, we have the following results:

lim

t→∞

∑N (t )
n=0 1 (Xn = k,Xn+1 = 1) ζn

N (t) = πk

( ∞∑
i=k

p
ϕ
i

)
E [ζn |Xn = k,Xn+1 = 1] ,w .p.1,∀k > 1 (188)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t) = (1 − π1)ϕ,w .p.1 (189)

lim

t→∞

∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζ An

N (t) = π1

∞∑
i=1

p
ϕ
i E

[
ζ An |Xn = 1,Xn+1 = 1

]
,w .p.1 (190)

lim

t→∞

∑N (t )
n=0 1 (Xn = k,Xn+1 = 1) ζ An

N (t) = πk

( ∞∑
i=k

p
ϕ
i

)
E

[
ζ An |Xn = k,Xn+1 = 1

]
,w .p.1,∀k > 1 (191)

lim

t→∞

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t) = (1 − π1)ϕp,w .p.1 (192)
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based on Lemma 2 and the Strong Law of Large Numbers. So we have:

U = lim

t→∞

(∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζn

N (t) +

∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζn

N (t)

+

∑N (t )
n=0 1 (Xn+1 > 1) ζn

N (t)

)
N (t)
I (t) (193)

=
π1

∑∞
k=1 p

ϕ
k E [ζn |Xn = 1,Xn+1 = 1]

λE [Tn]
+

∑∞
k=2 πk

(∑∞
i=k pi

)
E [ζn |Xn = k,Xn+1 = 1]
λE [Tn]

+
(1 − π1)ϕ
λE [Tn]

UA = lim

t→∞

(∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζ An

N (t) +

∑N (t )
n=0 1 (Xn = 1,Xn+1 = 1) ζ An

N (t)

+

∑N (t )
n=0 1 (Xn+1 > 1) ζ An

N (t)

)
N (t)
A (t) (194)

=
π1

∑∞
k=1 p

ϕ
k E

[
ζ An |Xn = 1,Xn+1 = 1

]
pλE [Tn]

+

∑∞
k=2 πk

(∑∞
i=k pi

)
E

[
ζ An |Xn = k,Xn+1 = 1

]
pλE [Tn]

(195)

+
(1 − π1)ϕp
pλE [Tn]

<
π1

∑∞
k=1 p

ϕ
k E [ζn |Xn = 1,Xn+1 = 1]

λE [Tn]
+

∑∞
k=2 πk

(∑∞
i=k pi

)
E [ζn |Xn = k,Xn+1 = 1]
λE [Tn]

+
(1 − π1)ϕ
λE [Tn]

(196)

= U (197)

the strict inequality in (196) is from (124) of Lemma 2. Therefore we have UA < U ,w .p.1 if ϕ > U ∗
.

By summarizing Cases 1, 2 and 3, the threshold-based strategy Ψ
ϕ
P satisfies Property 2 if and

only if ϕ ≤ U ∗
.

J PROOF OF COROLLARY 3
The UNIFORM strategy satisfies both Property 1 and Property 2 by Theorem 2, therefore Corollary

1 can be applied. So we have :

U = U ∗,w .p.1 (198)

Then we select such sample paths whereU = U ∗
is satisfied. For every sample path of this set, we

assume that ∀ϵ > 0, ∃δ > 0 such that:

lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Ui < U ∗ − ϵ) = δ (199)
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Define setsH−
ϵ (t) = {i : Ui < U ∗ − ϵ, i ≤ I (t) , i ∈ Z+} andH+ϵ (t) = {i : Ui ≥ U ∗ − ϵ, i ≤ I (t) , i ∈ Z+},

then we have:

U = lim

t→∞

∑I (t )
i=1 Ui

I (t)

= lim

t→∞

∑
i ∈H−

ϵ (t )

Ui

I (t) + lim

t→∞

∑
i ∈H+ϵ (t )

Ui

I (t) (200)

= lim

t→∞

∑
i ∈H−

ϵ (t )

|H−
ϵ (t) |
I (t)

Ui

|H−
ϵ (t) |

+ lim

t→∞

∑
i ∈H+ϵ (t )

|H+ϵ (t) |
I (t)

Ui

|H+ϵ (t) |
(201)

≤ lim

t→∞

∑
i ∈H−

ϵ (t )

|H−
ϵ (t) |
I (t)

U ∗ − ϵ

|H−
ϵ (t) |

+ lim

t→∞

∑
i ∈H+ϵ (t )

|H+ϵ (t) |
I (t)

U ∗

|H+ϵ (t) |
(202)

= δ (U ∗ − ϵ) + (1 − δ )U ∗
(203)

= U ∗ − δϵ

< U ∗
(204)

The reason of Equation (200) is by grouping allUi into two sets according to ifUi < U ∗ − ϵ or not.

By replacing all Ui byU
∗ − ϵ in the group of H+ϵ (t) whereUi < U ∗ − ϵ and replacing allUi byU

∗

in the group of H+ϵ (t) where Ui < U ∗
, we get (202) from (201). We get (203) from (202) based on

our assumption in (199).

However, (204) contradicts the way we selected the sample path. Therefore, for this set of sample

paths, we have ∀ϵ > 0:

lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Ui < U ∗ − ϵ) = 0 (205)

Therefore we have our conclusions for all the possible sample paths:

lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Ui = U
∗) = 1,w .p.1 (206)

K PROOF OF COROLLARY 4
We use the Pollaczek-Khinchine formula in the analysis of M/G/1 queue in [5] to conduct this

analysis. The average unfinished work in number of bits in the system by time t , which is defined

as v (t), can be formulated as:

v (t) =

∑
i ∈Z+:Ri=1,i≤I (t )

(
SiWi +

1

2
Si

(
Si
µ

))
t

(207)

The corresponding terms are as shown in Figure 3. Si is the reactive work of actual request i , and
Wi is the waiting time of the reactive part of request i when it starts to be transmitted. Define

v = limt→∞v (t) and take the limit of t → ∞ of (207):

v = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )

(
SiWi +

1

2
Si

(
Si
µ

))
t

(208)

= lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi

t
+ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) S

2

i

2tµ
(209)
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Consider the term

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi in Equation (209), we have:∑

i ∈Z+:Ri=1,i≤I (t )
SiWi

=
∑

i ∈Z+:Ri=1,Si>S∗,i≤I (t )
SiWi +

∑
i ∈Z+:Ri=1,Si=S∗,i≤I (t )

SiWi (210)

Define setsHS∗ (t) = {i ∈ Z+ : Ri = 1, Si = S∗, i ≤ I (t)} andH+S∗ (t) = {i ∈ Z+ : Ri = 1, Si > S∗, i ≤ I (t)},
then divide both sides with I (t) :∑

i ∈Z+:Ri=1,i≤I (t ) SiWi

I (t)

=

∑
i ∈H+S∗ (t )

SiWi

I (t) +

∑
i ∈HS∗ (t ) SiWi

I (t) (211)

=
|H+S∗ (t) |
I (t)

∑
i ∈H+S∗ (t )

SiWi

|H+S∗ (t) |
+

|HS∗ (t) |
I (t)

∑
i ∈HS∗ (t ) SiWi

|HS∗ (t) | (212)

Take limit of t → ∞ on both sides and we can get:

lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi

I (t)

= lim

t→∞

|H+S∗ (t) |
I (t)

∑
i ∈H+S∗ (t )

SiWi

|H+S∗ (t) |
+ lim

t→∞
|HS∗ (t) |
I (t)

∑
i ∈HS∗ (t ) SiWi

|HS∗ (t) | (213)

= lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Si > S∗)
∑

i ∈H+S∗ (t )
SiWi

|H+S∗ (t) |
+ lim

t→∞
1

I (t)

I (t )∑
i=1

1 (Si = S∗)
∑

i ∈HS∗ (t ) SiWi

|HS∗ (t) | (214)

Because the network scenario we are considering is λps < µ, so all theWi are bounded w.p.1. By

Corollary 3 we have:

lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi

I (t)

= lim

t→∞
0 ·

∑
i ∈H+S∗ (t )

SiWi

|H+S∗ (t) |
+ lim

t→∞
1 ·

∑
i ∈HS∗ (t ) SiWi

|HS∗ (t) | ,w .p.1 (215)

= (S∗) lim
t→∞

∑
i ∈HS∗ (t )Wi

|HS∗ (t) | ,w .p.1 (216)

= (S∗) lim
t→∞

∑
i ∈HS∗ (t )Wi

A (t) ,w .p.1 (217)

Because of Corollary 3, we have (215), and we have limt→∞
A(t )
t = limt→∞

|HS∗ (t ) |
t w.p.1 for (217).

The reason for (216) is by the definition of HS∗ (t) so we can replace all Si with S∗. Define w ≜

limt→∞

∑
i∈Z+ :Ri =1,i≤I (t )Wi

A(t ) and we have:

w ≜ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t )Wi

A (t)

= lim

t→∞

∑
i ∈HS∗ (t )Wi

A (t) ,w .p.1 (218)
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So (209) can be transformed as follow:

v = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi

A (t)
A (t)
t
+ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) S

2

i

A (t)
A (t)
2tµ
,w .p.1 (219)

= (S∗)wλp +
(S∗)2λp
2µ

,w .p.1 (220)

Because of the important property of a Poisson process, namely the Poisson-Arrivals-See-Time-

Averages (PASTA)[5], we have
v
µ = w,w .p.1, and we have:

w =
(S∗)2λp

2µ (µ − (S∗) λp) ,w .p.1 (221)

And for limiting average delay we have:

D =
(S∗)2λp

2µ (µ − (S∗) λp) +
S∗

µ
,w .p.1 (222)

The following calculations can be done by replacing S∗ with λs−µ
λ(1−p) .

L PROOF OF COROLLARY 5
Following Equation (222) and Corollary 3, the delay for UNIFORM strategy is:

DU =
S∗2λp

2µ (µ − S∗λp) +
S∗

µ
,w .p.1 (223)

With the EDF strategy, we need to consider Equation (209). According to the design of the EDF

strategy, the actual requests in the same busy period have the following relationship. If an actual

request i is proactively served, no matter partially or fully, the corresponding waiting time satisfies

Wi = 0 because all the previous potential requests have either been realized or have been fully

proactively served. So we have the following results:

Si = s ⇒Wi ≥ 0; Si < s ⇒Wi = 0,∀i ∈ Z+ (224)

So by reorganizing Equation (209):

v = lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) SiWi

t
+ lim

t→∞

∑
i ∈Z+:Ri=1,i≤I (t ) S

2

i

2tµ

= lim

t→∞

∑
i ∈Z+:Ri=1,Si=s,i≤I (t ) SiWi

t

+ lim

t→∞

∑
i ∈Z+:Ri=1,Si<s,i≤I (t ) SiWi

t

+ lim

t→∞
1

2µt

∑
i ∈Z+:Ri=1,i≤I (t )

Si2 (225)

= lim

t→∞
1

t

∑
i ∈Z+:Ri=1,Si=s,i≤I (t )

SiWi (226)

+ lim

t→∞
1

t

∑
i ∈Z+:Ri=1,Si<s,i≤I (t )

SiWi (227)

+ lim

t→∞
1

2µt

∑
i ∈Z+:Ri=1,i≤I (t )

S2i (228)
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Equation (225) is by splitting the SiWi terms into two groups according to whether Si < s or not.
Then in (226), we use s to replace all the Si where i ∈ {i : Ri = 1, Si = s, i = 1, . . . , I (t)} because of
(224). Also because of (224) we haveWi = 0,∀i ∈ {i : Ri = 1, Si < s, i = 1, . . . , I (t)}. So it would

not affect the results if we replace all Si with s in this group in (227). Combine the terms in (226)

and (227) and we have:

v = lim

t→∞
s

t

©«
∑

i ∈Z+:Ri=1,i≤I (t )
Wi

ª®¬ + lim

t→∞
1

2µt

∑
i ∈Z+:Ri=1,i≤I (t )

S2i (229)

= lim

t→∞
s
A (t)
t

(∑
i ∈Z+:Ri=1,i≤I (t )Wi

)
A (t) + lim

t→∞
1

2µ

A (t)
t

∑
i ∈Z+:Ri=1,i≤I (t ) S

2

i

A (t) (230)

= λpswE +
λp

2µ
S2E ,w .p.1 (231)

wherewE ≜ limt→∞

∑
i∈Z+ :Ri =1,i≤I (t )Wi

A(t ) is the limiting average of waiting time for each actual request

under the EDF strategy, and SE is the reactive work of requests under the EDF strategy.

Also due to PASTA, we have:

wE =
λpS2E

2µ (µ − λps) ,w .p.1 (232)

Notice here, s is the original object size without any proactive work. We have SE > S∗ due to

Theorem 4 and Corollary 1, then S2E ≥
(
SE

)
2

> S∗2, so we have:

DE =
λpS2E

2 (µ2 − µλps) +
SE
µ
,w .p.1

≥ λpS∗2

2 (µ2 − µλpS∗) +
S∗

µ
,w .p.1

= DU (233)

where equality holds if and only if p = 0.
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